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CHAPTER I

INTRODUCTION: THE GENERAL THEORY OF

DISTURBANCE-ACCOMMODATING CONTROL

1.1 Summary of Chapter I

This chapter discusses general aspects of the theory of

disturbance-accommodating control. The nature of dis-

turbances, the distinction between noise and disturbances,

and categories of disturbances are considered. A general

discussion of optimal control theory for the control problem

with disturbances is followed by presentation of an approach

to optimal control in the case where the disturbances have

"waveform structure." Finally, the theory of optimal

control for the linear-quadratic regulator with disturbances

is introduced, and the three primary modes of disturbance

accommodation are discussed: the cancellation mode, the

minimization mode, and the maximum utilization mode.

1.2 Disturbances in Control Problems; Their Nature and

Philosophies of Accommodation

Controlled systems are typically subjected to uncon-

trolled inputs arising from a variety of sources. These

uncontrolled inputs, referred to as disturbances, usually

occur at unpredictable times and are commonly viewed as
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undesirable. They may be broadly classified as either

noise-type disturbances or disturbances with waveform

structure II.

Uncontrolled inputs, which have completely erratic,

random characteristics (i.e., no significant degree of

regularity), are classified as noise-type disturbances.

Thermal noise encountered in radar and radio receivers is an

example of a noise-type disturbance. Disturbances of this

type are often modeled by their statistical moments and

spectral density properties. The fields of stochastic

optimal estimation and control are concerned almost entirely

with noise-type disturbances, and several texts [21-[4]

provide excellent coverage of these topics.

On the other hand, many uncontrolled inputs have "wave-

form structure" - their waveshape is describable as a

weighted combination of certain known basis functions. For

example, they may consist of weighted linear combinations of

steps, ramps, exponentials or other functions, even though

the specific values of the weighting coefficients or the

times at which they change value may be unknown. Such

inputs will be classified as waveform-type disturbances.

For example, wind gusts acting on a missile may be

classified as a waveform-type disturbance.

A further classification of disturbances may be made by

recognizing waveform-type disturbances as being either

natural or command disturbances. Some examples of natural

disturbances are wind forces on aircraft, fluctuating loads



3

on power generators and drift in an amplifie . An example

of a command disturbance arises in connection with a set-

point regulator problem, in which the primary control task

is to regulate the state x(t) to a given set-point x*. Con-

sider the usual linear state-variable model of a controlled

system:

k= A x + B u (.)

where x is the state vector, A is the "plant" matrix, B is

the input matrix, and u is the control vector applied to the

system. The "set-point error" is defined as xe = x* - x

and, using Equation (1.1), the dynamics of xe(t) are found

to be governed by

X=Ax -Bu-Ax*(12i e =Axe - *(1.2)

Therefore, the control objective in terms of Equation (1.2)

is to regulate the error state xe to zero. The term Ax*

is an "uncontrolled" input and thus has the effect of a

known external disturbance in the model Equation (1.2). It

is therefore evident that a controlled system represented by

the conventional model Equation (1.1) fails to account for

the presence of such command disturbances. A similar dis-

turbance arises in the servo-tracking problem associated

with Equation (1.1) wherein a prescribed servo-command func-

tion results in known, time-varying external disturbances.

Thus, even in the absence of "natural" disturbances, there
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is a need to zccount for command disturbances in control

system models.

Traditionally, the uncontrolled inputs associated with

control system design have been viewed as being detrimental

to the task of the control system. For example, in clas-

sical control system design, the frequency response of the

overall closed-loop system is often shaped to attempt to

filter-out noise and disturbances, while maintaining desired

stability and accuracy performance. Classical control de-

sign approaches have resulted in such design schemes as

"integral control", "feedforward control," and the notch

filter to minimize the effects of noise and disturbances.

On the other hand, there are practical situations in which

the effects of disturbances are not always detrimental to

achieving control objectives. For example, in a missile

intercept problem, where the primary control objective is to

drive the missile so that the position of the missile coin-

cides with that of the target, wind gusts that force the

interceptor missile to move in the direction of the target

may be constructively used to aid in the control task. In

particular, the presence of the wind disturbance may actual-

ly reduce the interceptor control energy and the time re-

quired to intercept the target. The concept of harnessing

"free" energy from winds, tides, etc. has, of course, been

used in applications other than control systems, and will ni

doubt see extensive further development.
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The application of modern cont:ol theory te ..iiques

permits the consideration of three modes of disturbance ac-

commodation:

(a) exact cancellation of the effect of the disturbance

on the control system,

(b) the *best" approximation to cancellation of the ef-

fect of the disturbance (when exact cancellation is not

achievable), and

(c) optimal utilization of the disturbance in ac-

complishing the control objectives.

In addition, combinations of these three modes may be

used in particular applications.

The theory to be developed in the present study assumes

that the disturbances might not be directly measurable. In

fact, in the typical case, only the commands and the plant

output y(t) are available as measurements to the controller,

where y(t) is a known algebraic function of time and the

states of the plant.

1.3 Optimal Control of Dynamical Systems in the Presence of
Disturbances; A General Approach

A fundamental difficulty arises when an optimal control

problem is formulated to include uncontrolled inputs such as

disturbances. Johnson [51 showed that the standard approach

via the Pontryagin maximum principle is effective only if

the time-behavior of the disturbance function is entirely

known a priori. Unfortunately, this is not a situation
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enjoyed in practice, since the behavior of disturbances is

almost never precisely known ahead of time.

One alternative to this standard optimal control ap-

proach is the stochastic-control method, which treats

disturbances as noise and utilizes statistical moments

(mean, covariance, etc.) to characterize the disturbance

time-behavior. The underlying assumption of the stochastic

approach is that all disturbance functions with the same

mean, covariance, etc. are modelled alike, ignoring any ad-

ditional information, such as waveform structure, that may

be available. Statistical moments, such as the mean and co-

variance, are based on averages over relatively long time

intervals. High-performance control system designs, how-

ever, often require short-term disturbance behavior patterns

for effective operation. For example, the long-term average

value wind-gust forces on an aircraft may be very close to

zero, but effective control of the aircraft in the presence

of wind gusts requires short-term behavior information about

the disturbance. The characterization of disturbances sole-

ly by statistical properties is justifiable in control

system design only when no waveform-mode characterization is

possible; that is, when the disturbance is essentially

noise.

1.4 Optimal Control in the Presence of Disturbances Having

Waveform Structure

1.4.1 Disturbance Modeling. Johnson I introduced

the concept of modeling uncertain waveform-type disturbances

tL

-~i'



by giving a differential equation that the disturbance is

known to satisfy. The uncertain disturbance is described, in

this approach, as a linear combination of functions:

w(t) = C1 f 1 (t) + c 2 f 2 (t) + • + cmfm (t) (1.3)

where the coefficients ci are piecewise constant, but un-

known, and the functions fi(t), called "basis functions,"

are known functions of time which characterize the possible

modes of the disturbance.

Suppose that the differential equation

dw d.+w + + dw + - W(t) (1.4)
dtP + dt -1 2 t +  1

(where the coefficients Sj are constants and w(t) is an

impulsive function consisting of delta functions, doublets,

etc.) has Equation (1.3) as its solution. Then the effect

of w(t) will be to cause the coefficients c i to jump in

value in a piecewise constant fashion at the completely

unknown arrival times of w(t).

As an example, the piecewise constant disturbance

w1 lt) = c (1.5)

where c is unknown and changes its value at unknown times in

a piecewise-constant fashion, clearly satisfies the differen-

tial equation

dw 1d- G(t) (1.6)

dii



where 1(t) denotes a sparse sequence of randomly arriving

impulses which cause the piecewise constant amplitude of the

disturbance wl(t) to change to a new value every once in a

while.

Similarly, a disturbance consisting of a linear com-

bination of constant segments and linear ramps:

w 2(t) - c 1 + c 2t (1.7)

clearly satisfies the equation

d'w2 (1.8)
" 4(t)

dt"

where the impulsive sequence "%(t) consists of isolated im-

pulses and doublets which cause the a and c2 to change

at unknown, random times.

In the general case, the basis functions fli(t),

f2it), . . ., fm(t) in Equation (1.3) may be constants,

ramps, polynomials, exponentials, sinusoidal terms, etc.

(and linear combinations of these), corresponding to the

mode content of the particular disturbance of interest. The

modeling approach will then be to find a differential equa-

tion of the general form as Equation (1.4) which has the

disturbance w(t) as its solution.

This approach will be used to represent realistic dis-

turbances in the present study. It will often be useful to

view the disturbance as the *output" of a generally non-

linear dynamic process

him&
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z = '. (z, x, t) + a(t) (1.9)

w = '(z, x, t), to -< t T (1.10)

where z is the disturbance "state" vector, x is the plant

state vector, w is the disturbance vector and a is a vector

whose elements are sequences of impulse functions. The

functions 0 and W are, in general, time-varying, non-linear

and may involve the plant state x (representative of a

plant-dependent disturbance process). Since the possible

modes of the disturbance are assumed to be known a priori,

the functions 0 and W are known, but the vector impulse

sequence a(t) is completely unknown.

In the case of the disturbance w2 (t), Equation (1.7),

(a linear combination of constant levels and ramps which

satisfies Equation (1.8)), the disturbance process is the

linear system
z = D z + o(t) (1.11)

w =H z (1.12)

where z and a(t) are 2-vectors, w is a scalar and i) and H

are defined by

D=[ 0 (1.13)

H=(1 0] (1.14)

It should be noted that the dynamic process, Equations

(1.9) and (1.10), seen as generating the disturbance w(t),

%IVAN-
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is a fictitious process. Nevertheless, the actual processes

which generate typical disturbances such as wind gusts, load

variations, drifts, and biases can be accurately represented

by this type of model.

1.4.2 Optimal Control. The state model, Equation

(1.9), of the disturbance process can be combined with the

typical state model of the plant dynamics, resulting in the

general expressions

x .0 (X, t, U (t) , (Z, X, t)) (1.15)

z V. (z, x, t) + a(t) (1.16)

Johnson has shown [51 that the optimal control u° , which

minimizes

J [u; x o , t o , T] - G(x(T), T) + j (L(x(t), t,u(t)) dt (1.17)
t 0

subject to the combined system Equations (1.15) and (1.16),

and assuming i(t) a o , can be expressed as

u 0 u°(x, z, t) (1.18)

That is, the optimal control at time t is a function of the

current state x(t) of the plant and the current state z(t)

of the disturbance. This result may be contrasted with that

obtained by the conventional optimization approach, which



gives the optimal control as a function of the plant state

x(t) alone. The control Equation (1.18), which accounts for

the presence of disturbances, was derived under the as-

sumption that the impulse sequence 0(t) was identically

zero. In fact, o(t) is sparsely populated and unknown

a priori; and, therefore, its effect could be viewed as a

sequence of unknown initial conditions z(to ) imposed on

the model Equation (1.16). A corollary to this viewpoint

(stated as a conjecture in 15]) is that the control

u°(xz,t) given by Equation (1.18) is "optimal" also for

the case where the sparsely popuilated impulsive sequence

o(t) is present.

Realization of the control law Equation (1.18) requires

that real-time, current values of the states (x,z) be made

available to the controller, through either direct measure-

ments or use of an observer. A discussion of the imple-

mentation of plant/disturbance state observers may be found

in Ill, [5), 16], and in Appendix A of this dissertation.

1.5 Optimal Control of the Linear-Quadratic Regulator with

Disturbances

1.5.1 The System Model. A special case of the optimal

control theory discussed in Subsection 1.4.2 is the linear-

quadratic regulator with disturbances present. Johnson has

shown in (1), [5), (6) and [7) how the disturbance accom-

modating theory applies to the set-point regulator and

servo-tracking control problems in which the plant dynamics

are modeled as:
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x = A(t)x + B(t)u(t) + F(t)w(t) (1.19)

y = C(t)x (1.20)

where x, u and w are vectors of dimension n, r and p, re-

spectively, and n > r > p. The disturbance process (1.9),

(1.10) is modeled by the linear system:

w(t) = H(t)z + L(t)x (1.21)

z D(t)z + M(t)x + a(t) (1.22)

where z is a p-dimensional vector.

1.5.2 The Cancellation Mode of Accommodation. The

problem of regulating the state x to a set-point, while at-

tempting to completely cancel the disturbances may be con-

sidered by splitting the control into two parts [6]:

uc R (1.23)

where uc is the control required to perform disturbance

cancellation and uR is the control required to drive x to

the desired set-point. For the special case of zero state

set-point, the control objective is to minimize the quadra-

tic functional

T
J(u) - f [xT(t)Q\t)x(t) + uRT (t)R(t) UR(t)] dt (1.24)

to
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subject to the terminal condition x(T) i 0 and to the plant

dynamics Equations (1.19) and (1.20), and in the face of any

possible disturbance w(t) produced by Equations (1.21) and

(1.22), where Q(t) and R(t) are known positive-definite,

symmetric matrices on the interval [to, T). In (1.24) T is

the terminal time, and may be fixed a priori or may be

unspec if led.

The disturbance-accommodating control, if it exists,

must be such that the term F(t)w (t) in Equation (1.19) is

exactly cancelled by control action B(t) uc(t). That is,

the required control component uc is of the form

uC = OC (x,t,w)

where

B(t)o (x, t,w) + r(t)w(t) E 0 (1.25)

for all realizable values of w(t) = Hz + Lx. Equation

(1.25) can be satisfied if, and only if, the column range

space of F(t)[H(t)IL(t)] lies within the column range space

of B(t). That is,

F(t) [H(t)i L(t)]= B(t)r(t) (1.26)

for some matrix r(t), or, equivalently,

Rank [B(t)IF(t) [H(t)IL(t)]]- Rank [B(t)], to < t < T (1.27)

If Equation (1.26) is satisfied, then Equation (1.25) can be

satisfied by choosing

.~~ ~~ .. , ...
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uc -c c(x, t, w) r - (t) X )  (1.28)

such that complete cancellation of the disturbance is ob-

tained. Substituting Equations (1.23) and (1.28) into Equa-

tion (1.19) then gives

A(t)x + B(t)uR(t) (1.29)

Conventional linear-quadratic regulator theory for the re-

duced problem Equation (1.29) (for example, see Athans and

Falb [81) gives the optimal control uR for Equations

(1.24) and (1.29) in the familiar state-feedback form

UR(t) - K(t)x(t) (1.30)

where the feedback gain matrix K(t) satisfies a particular

matrix Riccati differential equation. The complete control

uO is the superposition of Equations (1.28) and (1.30):

0 t) [K(t) - r 2 (t)] x- z (1.31)

u (x, z, t)1.3x1)(t

where r - [Ir11r 2 1

Implementation of this optimal control law employs an

A A
estimator to generate estimates x and z of the states x and

z from measurements of the output y. Johnson has shown [5]

that these estimates may be obtained from the composite



estimstor described by

A A + B(t)K(t) O + _I -Y

()M(t) D(t)j _K (1.32)

where the matrices Kl (t) and K2 (t) are chosen to make

the estimation error

X(t)
-, - (1.33)

settle toward zero quickly between arrival times of the

isolated impulses of o(t). The term y in Equation (1.32)

represents the measurement of the output of the actual
a A

plant, and x and z are the resulting on-line, real-time

estimates which are then used in the implementable control:

u (x, z, t) - [K(t) -r t) x t)z (1.34)

The resulting controller is called a "disturbance-absorbing

controller" and has interesting features which may be com-

pared with results from classical design approaches. For

the case of a piecewise constant disturbance, a propor-

tional-plus-integral controller is obtained from Equa-

tion (1.34); for disturbances that are represented by

higher-order polynominals, multiple-integral feedback
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structures are obtained. In the case of sinusoidal dis-

turbances, with completely unknown phase and amplitude, ex-

pression Equation (1.34) produces the classical notch-filter

effect for the closed-loop system.

1.5.3 The Minimization Mode of Accommodation. Complete

cancellation of the effects of the disturbance on the plant

dynamics may not be possible - it may be mathematically im-

possible to find a r(t) satisfying Equation (1.26). If this

is the case, then uc(t) may be chosen to minimize the ef-

fects of the disturbance on the plant behavior, in some spe-

cified sense. One approach is to minimize the norm

!IB(t)u c + F(t)w(t)II . (1.35)

The vector uc which minimizes Equation (1.35) is not

unique, in general; but, if one chooses the uOc which

itself has minimum norm, then that uOc is unique, and is

given by

U = -B#(t)F(t)w(t) (1.36)

where B#(t) is the Moore-Penrose generalized inverse of

B(t) [6], (9]. If the rank of B is equal to r (the

dimension of the control uOc), then B# has the specific

form

-1
B*(t) -[BTtBt] B T t (1.37)
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Te implementation of the control Equation 
(1.36) requires

on-line, real-time estimates of x and z; and the modified

composite state observer equations are described in [6].

The computation of UR(t) is performed as for the case of

complete cancellation.

1.5.4 The Maximum Utilization Mode. Disturbances are

not necessarily detrimental to the achieving of control sys-

tem objectives. Although numerous approaches have been de-

veloped for cancelling or minimizing disturbances, the idea

of utilizing disturbances in control systems is a relatively

recent development [1], (51, [6], [7]. Constructive

utilization of disturbances can lead to reduced control en-

ergy and reduced time required to bring the plant state to a

required set-point objective. Likewise, in servo-tracking

problems, disturbances may be constructively utilized to

assist the control in guiding the plant output y(t) to

faithfully "follow" a time-varying command function yc(t).

Maximum utilization of a disturbance w(t) having wave-

form structure can be achieved by employing optimal control

theory to design the controller. Although this is virtually

impossible using classical control system design approaches,

it is relatively straightforward with modern optimal control

theory. The key to obtaining maximum utilization of dis-

turbances is to choose a performance index J so that, when J

is minimized with respect to the control u(t), the primary

control objective is accomplished and maximum use of the

disturbance w(t) is achieved. For example, if the primary
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control objective is to regulate the plant state x(t) to

zero, a secondary objective may be to use as little control

energy as possible. One may be able to achieve these ob-

jectives by choosing a quadratic-type performance index as

J= Ix T(T) Sx(T) + I IT (t Qx (t) + uT (t) Ru(tl dt (.8

t o

where S and Q are given symmetric non-negative definite

matrices. S + Q is positive definite, R is a positive-

definite matrix, and the terminal time T is specified. Note

that, in this design, the control u(t) is not split into

components as was the case in Equation (1.23). The presence

of the positive definite matrix R encourages the effective

utilization of any "free" energy available in the disturb-

ance. This approach was used for a special application in

linear systems in the work of Johnson and Skelton 113], and

was subsequently generalized in the work of Johnson 16].

In the next chapter it will be seen that the disturbance

utilizing problem can be formulated as a linear-quadratic

regulator problem by using the augmented vector

x =(1.39)

which is a composite of the state vectors of the plant and

the disturbance process. The composite system equation may

be written by using x and the plant and disturbance dynamic
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Equations (1.19), (1.21) and (1.22), with L(t) 0, as fol-

lowa:

x g ~ (1.40)

The performance index Equation (1.38) can be written in the

equivalent form

T

J - 1x(T)Sx(T) + f x(t)Qx(t) + U (t)Ru(t) dt (1.41)

t
0

where S - cTSj, E [-CIO] and 0 TQ. It will be

seen in Chapter II that the sparse sequence of impulses a (t)

can be disregarded and the control which minimizes Equation

(1.41) subject to Equation (1.40) can be found using stan-

dard linear-quadratic methods, resulting in the control

u0 - -R B~ [Kxx + Kxz (1.42)

which is a function of the states of the plant and of the

disturbance process. It will also be seen that the time

varying gain matrix Kx(t) is the familiar gain term ob-

tained as the solution of a certain matrix Riccati equation,

as in the standard linear-quadratic regulator problem. The

time-varying gain matrix Kxz will be found as the solution

of a certain linear matrix equation which depends upon K.

and the parameters of the plant and disturbance processes.

The derivation and properties of Kx, Kxz and additional
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matrices associated with the more general non-zero set-point

and servo-tracking problems will be further examined in the

next chapter.



pI

CHAPTER !I

DISTURBANCE-UTILIZING CONTROL; GENERAL

THEORY FOR LINEAR-QUADRATIC PROBLEMS

2.1 Summary of Chapter II

This chapter presents a general theory for disturb-

ance-utilizing control in the case of linear-quadratic re-

gulator and servo-tracking problems. A description of the

linear-quadratic regulator and servo-tracking control prob-

lems is given, followed by a discussion of the control ob-

jectives, problem formulation, and general solution of these

problems in the context of disturbance-utilizing control.

The computational and dynamic properties of the disturbance-

utilizing control law are discussed in terms of its general

behavior, steady-state solutions and methods for determining

steady-state values. The concepts of burden, assistance and

utility are presented and the properties of the utility

function and domains of positive uL lity are examined in

detail.

2.2 Description of the Linear-Quadratic Regulator and
Servo-Tracking Control Problems

The concept of achieving maximum utilization of a dis-

turbance by employing optimal control theory in the control-

ler design was introduced in the previous chapter. The
21



22

specific cases of obtaining maximum utilization of a dis-

turbance in linear-quadratic regulator and servo-tracking

control problems will now be described. The approach will be

demonstrated by considering a specific example using the

linear system model

= A(t)x + B(t)u(t) + F(t) w(t) (2.1)

y = C(t)x (2.2)

where x, u and w are n-, r-, and p-vectors, respectively,

and n > r > p. The disturbance process will be assumed to

be a special case of the model of Equations (1.21) and

(1.22) with L(t) S 0 and M(t) - 0:

w(t) = H(t)z (2.3)

= D(t)z + a(t) (2.4)

2.3 The Objectives of Disturbance-Utilizing Control

Strategy

The primary objective of control is assumed to be

either:

(a) regulation to a given state set-point Xsp or a

given output set-point ysp, or
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(b) servo-tracking of a given state or output servo-

command function xc(t) or Yc(t).

The secondary control objective is to achieve the prim-

ary objective while minimizing the control energy as-

sociated with u(t). Control energy is assumed to be mea-

sured by the time-integral of the quadratic form

uT(t)R(t)u(t), when R(t) is a given symmetric, positive-

definite matrix.

These control objectives may be achieved [7] by con-

sidering the quadratic performance index

T
1 T,1 frJ = 2-eT(T)Se(T) + (t)Q(t)e(t) (2.5)

t
0

+ uT(t)R(t)u(t)J dt

where S and Q(t) are given symmetric non-negative definite

matrices, S + Q is positive definite, the terminal time T is

given and, e = yc(t) - y(t) (or ysp - y(t)). The case

of state set-points or state servo-commands may be consider-

ed by setting C = I in Equation (2.2). The control objec-

tive is achieved by minimizing J with respect to the control

u(t), subject to the plant and disturbance Equations (2.1)-

(2.4).

The set of expected servo-commands yc(t) or set-points

ysp are modeled by the equations
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c - F (t)c + t) (2.7)

where y,- is an mn-vector, c is tile v by I state vector ot

the set-point or servo-command process, c(t o ) is arbitrliry

and ji (t) is a sparse sequence ot inpulses. It set-points

are beinq considered, y, should be set eqUtl[ to Ysp, .

pieceWise COnStan11t Nuncti0n, and E(t) will be identical-

ly zero. For the caise ot: servo tracking o se-point req-

ulation, the fundamental neCess.ary condition for perftect

set-point or -servo trackinq, e(t) a 0, is that the "track-

,ability condition" G(t) - C(t)O(t) be satisfied for some

0(t) (see references [101, [l1 , [12], [371).

2.4 Formulation of the Disturbance-Utilization ptijal
ContL-ol Problem

In this co<,trol ,er de.;iqn approach, the control 1i (t)

is not split as it wa!; in 1X.quation (1.3). The presence ot

the positive penalty tVir ur(t)R(t)u(t) in the inteqrand

ot tile performance index IquItILon (2.5) encouraqes tile

maximum utilization of the "tree energy" ot tile disturbaince

w(t) while achieving the primary control objective ot

-set-point requliation or servo-trackinq. The disturbance

tit ilization linear-quadratic optimal control problem i:;

tormulated ( for example, see Reference [71 ) by usi nu th,"

augmented vctor
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x
x (2.8)

which is a composite of the state vectors of the plant, the

set-point or setvo-command process, and the disturbance

process. The composite system equation may be written by

using x and Equations (2.1), (2.4), and (2.7) to obtain:

X L0  0 x +  0 u (2.)

Thlio pttotmince idnex Equation (2.5) can be written in the

Sequvalnt t1m

J x (T) x'( r) + [ x (t)3(t)'X(t) + uT(t)R(t)Iu(t dt(21.10)

where S - d'r.C, C - L-CIGOI and Q - CTQC.

For reasons discussed in Reference Ibi, the sparse se-

quences of impulses ' (t) and it(t) in Equation (2.9) may be
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disregarded, and the solution of Equations (2.9) and (2.10)

can be found using standard linear-quadratic optimal control

methods. The optimal disturbance-utilizing control is the

control uO(t) which minimizes Equation (2.10) subject to

the dynamic Equation (2.9).

2.5 General Solution of the Disturbance-Utilization
Optimal Control Problem

The minimization of the performance index J Equation

(2.10) subject to the composite dynamic system Equation

(2.9) can be accomplished by using the Hamilton-Jacobi the-

ory [41, L8]. If we define the special function V(X,t) to

be the value of the performance index J when the optimal

control uO(t) is employed, i.e.

V( , t) = J(u°; x, t, T) ; x(t o ) = x to = t (2.11)

it can be shown that the function V(',t) satisfies the

Hamilton-Jacobi-Bellman partial differential equation

3V' -vV + Bx - §RV %v+ x =0 (2.12)

subject to the boundary condition
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V(x, T) = Tx X (2.13)

where Q and S have already been defined, and A and B are de-

fined by

A 0 (2.14)

B 0 (2.15)

and V3

X' N (2.16)
It may be shown 181 that, if u(t) is not constrained, T is

specified, S and Q(t) are non-negative definite, S + Q is

positive definite and R(t) is positive definite, then an op-

timal control exists and is given by

uO(t) = R-1 (t)BT(t)VV . (2.17)
x

The sought solution of the Hamilton-Jacobi-Bellman Equation

(2.12) can be expressed as the symmetric non-negative de-

finite quadratic form

., I..
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V(x, t) P P (t)X (2.18)

where P(t) = pT(t) > 0 is chosen to satisfy Equation

(2.12). For mathematical simplification, it is convenient

to partition P as the 3 x 3 block matrix:

K Ct) K Xc(t) K CZt)

l Jz

where the dimensions of the component matrices are denoted

as follows: [K] 1; [K.)] ; [Kx] ;

nxn nxv nxp

[K zC ] ;[KzC] ;[z] .
vxn vxv vxp

pxfl PXV P

Now if Equations (2.18) and (2.19) are substituted in

the Hamilton-Jacobi-Bellman Equation (2.12), the result is a

set of six unilaterally coupled matric differential

equations which determine the individual blocks Kij of the

partitioned matrix P. Those equations, with their specific

terminal conditions are as follows:
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1 -T T T CSKx (-A + BR B K X) Kx K xA C QC ;K x(T) = ~c(2.21)

1 -T T TC
K = (-A + BR_ B K ) K xc- K xcE + C QG ;K xc(T) SG (s2.22)

1 -T TKxz =(-A + BR B K X) Kx - Kx FH - K xZD ;KXZ (T) = 0 (2.23)

Kc = (K E + E TK ) + K TBR_ 1B K -G TQG;K (T) =G TSG (2.24)
C CC xc xc C

K ( D+ EK K (BR B K - FH);K (T) 0(2.25)

Cz cz cz [(H) KxZFcj

T T -i1T T T1Kz -(K D+ D K) + Kx BR B KxZ F)K + KzF

;K z(T) = 0

These equations are independent of the initial conditions on

the plant, disturbances, and commands, and can be solved by

integrating in backward time, starting at t = T and "advanc-

ing" to t = to.

Finally, using the fact that V.'V = §x, and sub-

stituting this relation in Equation (2.17), the optimal

disturbance-utilizing control is obtained as

u - -R -1BT rK xx+ K c + K z z1 2.7
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Note that, for the zero set-point regulator with no dis-

turbances present, Equation (2.27) reduces to the form

familiar from the solution of the "conventional" linear-

quadratic zero set-point regulator problem

u 0 = _R-IBTK x
X (2.28)

in which Kx is the solution of Equation (2.21), a matric

Riccati differential equation; (for example, see [8]):

As in the other modes of disturbance accommodation, a

composite state reconstructor will be used to provide es-

timates of x, c, and z for implementation of the control law

Equation (2.27).

2.6 Computational Features and Dynamic Properties of the
Disturbance-Utilizing Control Law

2.6.1 Behavior of the Riccati/Linear System of

Matric Differential Equations. The behavior of the

disturbance-utilizing optimal control law Equation (2.27)

depends on the values of the time-varying gain matrices

Kx(T), Kxc(t) and Kxz(t), which are the solutions of

the differential Equations (2.21)-(2.23); therefore, a study

of these solutions is appropriate.

Results from the "conventional" linear-quadratic reg-

ulator problem (i.e., with no disturbances present) apply to
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the solution of Equation (2.21) (see Reference 181). That

is, if S and Q(t) are non-negative definite, T is specified,

and R(t) is positive-definite, then Equation (2.21) has

Kx(t) as its unique n x n positive-definite solution.

This equation is completely uncoupled from the others, and

so it can be solved independently for Kx(t). Note that

Equations (2.22) and (2.23) each depend on Kx(t), ex-

hibiting a unilateral coupling.

Since the boundary condition for each equation is given

at the terminal time, t - T, the equations must be solved in

backward time. By making the substitution

T - T - t (2.29)

in Equations (2.21)-(2.23), where (T - to ) > T > 0, the

following "backward time" equations are obtained (here (C) -

d/d ) :
-i 1T~x T T

Kx - (A - BR B K ) Kx + K xA + C TQC ;K (0) C TSC (2.30)

Kxc- (A - BRIBTK x)TKxc + KxcE - CTQG ;Kxc(0) -cTsG(2.31)

Kxz " (A - BR-BTK x)TKxz + KxFH + KxzD ;Kxz(0) 0 (2.32)

These differential equations are readily solved numerically,

using digital computer numerical integration routines, such
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as second-order or fourth-order Runge-Kutta, to obtain

Kx(t), Kxc(t), and Kxz(t) gain histories for the

optimal control law Equation (2.27) over the total control

interval to ( t < T. The remaining three equations,

(2.24)-(2.26), do not enter into computation of the optimal

control law; but the latter two Equations, (2.25) and

(2.26), along with Equation (2.23), have important effects

on state space domains in which positive disturbance

utilization is possible. This topic is considered in

Section 2.8 of this chapter.

2.6.2 Existence of Steady-State Equilibrium

Solutions of the Riccati/Linear System. The special case in

which the matrices A, B, C, D, E, F, G, H, Q, R and S are

all constant matrices is important in practical applications

and can be analytically studied somewhat further than the

time-varying case. The existence of steady-state solutions

of the matric differential Equations (2.21)-(2.26) as T--

will now be examined for the constant case.

2.6.2.1 Existence of a Steady-State Solution Kx.

The standard linear-quadratic optimal control problem is

concerned with the task of finding the optimal control u°

to minimize a quadratic performance index Equation (2.5)

subject to an undisturbed linear state model
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x=AX + B (2.33)

y= Cx (2.34)

The non-negative definite matrix Q in the performance index

Equation (2.5) can always be expressed as (14]

Q = H 1 H1  (2.35)

for some unique matrix Hl. If the matrix pair (A, H1 ]

is completely observable and the matrix pair [A, B] is com-

pletely controllable, then it can be shown [151 that, for

the time invariant problem, as T--, the solution Kx(T) of

the matric Riccati Equation (2.30) is uniformly

asymptotically stable to a well-defined matrix Kx

lim Kx (T) = Kx (2.36)

where Rx is the unique, positive-definite solution of the

so-called matric algebraic Riccati equation

(A - BR-lBTKX)TKx + KXA + CTQc 0 (2.37)

The composite system described by Equation (2.9), how-

ever, is not completely controllable, since the control u(t)
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has no effect on the disturbance z or the set-point/servo-

command state c. Thus, the aforementioned sufficient con-

ditions for the existence of a steady-state solution are not

met by the augmented matrix P (Equation (2.19)).

An alternative approach [161 to the problem of existence

is to partition the composite system equations into a com-

letely-controllable (c.c.) part and a totally uncontrollable

part. Then the conditions on the existence of steady-state

value of gain will apply to the c.c. part. For this

purpose, the composite matrices A and B will be

re-partitioned as

i , l A2 ; B(2.38)

where the following identifications are made:

A A (2.39)

A3 = [a JFH] (2.40)

A = [E[ 0D(2.41)
B OIDB (2.42)

B1 B

It is observed that Equation (2.30) is the Riccati equa-

tion for the auxiliary problem with system equation

I.~
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xI =A 1 XI + B1 u (2.43)

y = C x (2.44)

where the composite vector x has been repartitioned as

(2.45)

where

X1 = X

fc\. (2.46)

II

Now, if the matrix pair (Al, HIj is completely ob-

servable and the matrix pair [Al, B1] is completely con-

trollable, then as T -the matric Riccati differential Equa-

tion (2.30) has a solution which approaches a unique, con-

stant, positive-definite value ix, and furthermore, Kx

is the unique, positive definite solution of the associated

matric algebraic equation (2.37).

The inclusion of the condition that the matrix pair

[Al, HI] be completely observable ensures that the

eigenvalues of the closed-loop matrix

ACL - (A - BR-1BTKx (2.47)

will have negative real parts [15, 17; pp. 39-43], even

if the original open-loop system is unstable. (The

-_ -
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condition on [AI , Hj] has the effect of ensuring that

the elements of the state vector x are all "observed" by the

performance index J).

2.6.2.2 Existence of a Steady State Solution

K.xc. If /-he conditions for the existence of K are met,

then as :, Equation 2.31 may be written

T T (0 _TK (T) A K (T) + K x() E - C QG; Kx(0) S-csG (2.48)xc CL xc xc xc

Equation (2.48) may be rewritten as the equivalent vector

differential equation ([20], Chapter 12)

kxc (T) = AXc k xC(T) - cxc ; k xc(0) = k 0x c  (2.49)

where kxc is now a (nv x I) vector whose elements are the

elements of the (n by %) matrix Kxc. Similarly, Cxc is

a (n' by 1) vector whose elements are the elements of

CTQG, and k0 xc is the (n vby 1) initial-condition vector

whose elements are the elements of -CTSG. The matrix

Axc is the (nv by nv) square matrix defined by the

Kronecker sum

A " ACL X I + I n X ET (2.50)
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which is the sum of two Kronecker products. Recall that

ACL is an (n by n) matrix and E is a (v xv ) matrix.

Since Equation (2.49) is equivalent to Equation (2.48),

the stability of Equation (2.48) is determined by the

eigenvalues of A xc. Bellman ([20] , p. 230) shows that the

eigenvalues of the Kronecker sum

AK = Ao XI + In XB (2.51)

are \i(Ao) + X A(B );

= 1, 2, ..., n ; j=l, 2, . .. v (2.52)

where A is an (n by n) matrix and B is a C v by v)0 0

matrix, the eigenvalues of A are Xi (A0 ) and the

eigenvalues of B are Aj (B0). Using the fact that the
0 J

eigenvalues of ET and of E are identical, we may thus de-

termine the eigenvalues of Axc by

Xi (AcL) + X. (E);

i = 1, 2, ... , n ; j = 1, 2, ... , V (2.53)

where Xi (A CL) and A. (E) are the eigenvalues of ACL

and E, respectively. The vector differential Equation

~ I,"



38

(2.49) will be asymptotically stable if, and only if, the

eigenvalues of Axe have neqative real parts. Therefore,

we may state the following

CONDITION 2.1 A necessary and sufficient condition that

Kxc has a steady-state value K., is that

Re [\i(ACL) + j(E)] < 0;

for any i 2 , , ... , n ; j = 1, 2,' ... , v)

(2.54)

i.e., that the sum of the real parts of any eigenvalue of

the closed-loop system matrix ACL and any eiqienvalue of

the set-point/command matrix E is negative.

Condition 2.1 is necessary because Axc must be an

asymptotically stable matrix (Equation 2.49 must have an

asymptotically stable solution kxc(T)) to ensure that

Kxc exists. Condition 2.1 is a sufficient condition be-

cause, if Axc is an asymptotically stable matrix, then

kxc(T) is asymptotically stable and hence Kxc exists.

Note that Condition 2.1 will be satisfied for the con-

stant set-point problem, in which E a 0 since ACL is an

asymptotically stable matrix under the assumption that the

pair [A, BI is completely controllable, and Q is non-neg-

ative definite so that

Re [Ai(ACL)] < 0; for all i- 1, 2, ... , n (2.55)
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In addition, Condition 2.1 wili be satisfied by a servo-

command dynamic system (2.7) such that E has the property

Re[X (E)]0 (2.56)

Furthermore, Condition 2.1 may be satisfied by certain E

matrices having eigenvalues with positive real parts if it

is known that ACL has a certain prescribed degree of

asymptotic stability such as

Re [X.(ACL)] - oCL; "CL >0 (2.57)

where GCL is sufficiently large. In that case Condition

2.1 would be satisfied for

Re [ji(E)] < aCL; 0 CL > 0 (2.58)

If Condition 2.1 is satisfied. then a steady-state value

Kxc will exist, such that

lim Kxc (T) - Kxc (2.59)

Moreover, when the constant matrix Kxc is substituted in

Equation (2.31), the algebraic equation
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AcLT + E=cTQG (2.60)
ACL xc + xcE CG

is obtained, where ACL is defined by Equation (2.47) and

now depends on the constant limit Kx. In a manner similar

to that used in the analysis of the differential Equation

(2.48), Equation (2.60) may be written as the equivalent

vector algebraic equation [20; pp.231]

A k c (2.61)xc xc x

where Axc is defined in Equation (2.50), the vector Cxc

was defined following Equation (2.49) and k is the con-xc

stant (nv by 1) vector whose elements are the elements of

the matrix Kxc. Since the eigenvalues of Axc are

Ai(AcL) + Xj(E), the algebraic equation (2.61) has a

unique solution if, and only if [20; pp. 231],

Ai(ACL) + Aj(E) # (2.62)

for any i = 1, 2,..., n ; j i, 2, ...,v

Moreover, since Equation (2.61) is equivalent to Equation

(2.60), we can state the following:

COROLLARY 2.1 A necessary and sufficient condition that

the linear matric algebraic Equation (2.61) has a unique

solution Kxc, for any CTQG, is that
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Xi(ACL) + Aj(E) # 0

for any i = 1, 2, ... , n ; j = 1, 2, ... , v (2.63)

which is automatically satisfied if Condition 2.1 is met.

The necessary part of Corollary 2.1 follows since the

eigenvalues of Axc must be non-zero for the existence of a

unique solution kxc in Equation (2.61) and hence, for the

existence of matrix Kxc. The sufficient part of Corollary

2.1 follows because, if the eigenvalues of Axc are non-

zero, it is guaranteed that a unique solution kxc exists

and hence that a unique solution Kxc exists.

A parallel approach is used in the following sections to

determine the existence conditions for steady-state gains

Kxz, Kc, Kcz and Kz. In each case, a linear matric

equation is analyzed by examining an equivalent linear

vector-matric equation.

2.6.2.3 Existence of a Steady-State Solution

Kxz. The conditions for the existence of a steady-state

matrix

Kxz = lim Kxz (T)XZ (2.64)

may be determined by an approach like that of section

2.6.2.2. The differential equation (2.32) involving
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Kxz(T) may be written (if Kx exists as T--) as follows:

T
K xz(T) - ACL K xz(T) + K xz(T)D + K xFH ; Kxz (0) = 0 (2.65)

Equation (2.65) may be expressed by the equivalent vector

differential equation

kxz(T) = Axz k xz(T) + Cxz ; k xz(0) - 0 (2.66)

where kxz is an (np by 1) vector whose elements are the

elements of the matrix Kxz, and cxz is an (np by 1)

vector whose elements are the elements of KxFH. Axz is

the (np by np) square matrix defined by the Kronecker sum

Axz - A CLXIp+ InXD . (2.67)

Since DT and D have the same eigenvalues, the eigen-

values of Axz are

Ai(ACL) + Xj(D) ; i = 1, 2, ... , n; j - 1, 2, ... , P(2.68)

where Ai(ACL) are the eigenvalues of the closed-loop

system (which have negative real parts if the pair [A, B) is

completely controllable and Q is non-negative definite), and
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kj(D) are the eigenvalues of the system matrix of the dis-

turbance process, Equation (2.4). The vector differential

Equation (2.66) will be asymptotically stable if, and only

if, the eigenvalues of Axz have negative real parts. We

therefore have

CONDITION 2.2 A necessary and sufficient condition that

Kxz has a steady-state value is that

Re [xi(ACL) + X i(D < 0 (2.69)

for any i = l, 2, ..., n ; j = 1, 2, ..., p

i.e., that the sum of the real parts of any eigenvalue of

the closed-loop system matrix ACL and any eigenvalue of

the disturbance process system matrix D is negative.

Since ACL is asymptotically stable, Condition 2.2 will

be satisfied by disturbance models such that

Re [X j(D)] < 0 , (2.70)

and, in the special case where it is known that ACL POs-

sesses a certain prescribed degree of asymptotic stability

such that Equation (2.57) holds, then Condition 2.2 will be

satisfied by

Re [j(w] < °CL ' °CL > 0 (2.71)
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If Condition 2.2 is satisfied, then a steady-state solu-

tion Kxz will exist, and when this is substituted in Equa-

tion (2.32), the following matric algebraic equation is ob-

tained:

A CLTxz + KxzD =-KxFH (2.72)

An equivalent vector algebraic equation may be written as

Axzkxz =-cxz (2.73)

where Axz is defined in Equation (2.67), cxz was defined

following Equation (2.66), and kxz is the constant (n0by

1) vector where elements are the elements of the matrix

Kxz. Since the eigenvalues of Axz are Xi(ACL) + Xj(D),

the algebraic Equation (2.73) has a unique solution

if, and only if, [20; pp. 231],

Ai(ACL) + i(D) 0;(2.74)

for any i - 1, 2, ... , n ; j = 1, 2, ... , v

Moreover, since Equation (2.73) is equivalent to Equation

(2.72), we can state the

COROLLARY 2.2 A necessary and sufficient condition that

the linear matric algebraic Equation (2.72) has a unique
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solution Kxz, for any matrix -KxFH, is that

Xi(ACL) + X.(D) # 0; (2.75)

for any i = 1, 2, ..., n ; j=,2, ..., p

which is automatically satisfied if Condition 2.1 is met.

2.6.2.4 Existence of a Steady-State Solution Kc.

If, as t-r, a steady-state matrix Kxc exists, then

Equation (2.24) leads to the "backward-time" equation

kC(T) =- ETKC () + K C(T)E - TBR-BlT + GTQG; (2.76)

K (0) - GTSGc

Equation (2.76) is stable if, and only if, the eigenvalues

of E have negative real parts, which leads to

CONDITION 2.3 A necessary and sufficient condition that

R'c exists is that [20; pg. 231]

ReX i(E) + X j(E)] < 0;

for any i - 1, 2, ..., v ; j = 1, 2, ...,v ; (2.77)

(including i = j)

i.e., that the real part of every eigenvalue of E be nega-

tive.

This is a stronger condition than the condition for the

existence of Kxc. Note that Kc will not exist for the

set-point regulator case, since for that problem, the set-

point "command generator" model (Equation 2.7) has E - 0,

and therefore is not asymptotically stable. However, Kc

will exist for such servo-command systems as may be modeled

by an asymptotically stable linear system matrix E.
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In those cases where Condition 2.3 is satisfied, the

limit Kc may be substituted in Equation (2.76), resulting

in the matric algebraic equation

ETKc + KCE = KxcBR - I B T xc - G TQG (2.78)

which has a unique solution Kc if, and only if, it

satisfies

COROLLARY 2.3 A necessary and sufficient condition that

the linear matrix algebraic Equation (2.78) has a unique

solution Kc, for any matrix KxcBR-IBTKxc -GTQG,

is that Kxc exist and that [20; pg. 231]

Xi(E) + X.(E) $ 0;

for any i - 1, 2, ... ,v ; j - 1, 2, ... ,v ; (2.79)

(including i = j)

This will automatically be satisfied if Condition 2.3 is

met.

2.6.2.5 Existence of a Steady-State Solution

Kcz. If, as -oo, Kxc and Kxz exist, then Equation

(2.25) leads to the "backward-time" differential equation

T T 1iT-
cz ( T )  E Kcz ( T) + K cz (T)D R xc T ( BR - I BTRXz  FH)(2 .80)

K (0) 0
cz
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The stability of Equation (2.80) is determined by XI(E) +

j(D) as follows:

CONDITION 2.4 A necessary and sufficient condition that

a steady-state solution Kcz exist is that Kxc and Kxz

exist and

ReN i (E) + Xi(D)] <0;

for any i = l, 2, ...,v ; j = 1, 2, (2

If Kcz exists, then, when it is substituted in Equa-

tion (2.80), the result is the matric algebraic equation

_ T- R(2.82)K KczD= T(BR-IBTKz - FH)
cz cz xc xz

which has a unique solution K if, and only if, it
cz

satisfies

COROLLARY 2.4 A necessary and sufficient condition that

the linear matric algebraic Equation (2.82) has a unique

solution Kcz' for any matrix KxcT(BR- B Kxz-FH),

is that K and K exist and

J (2.83)

for any i = 1, 2, ...,v ; j = 1, 2, ...,p

which will be automatically satisfied in Condition 2.4 is

met.

2.6.2.6 Existence of a Steady-State Solution Kz .

If Kxz exists as T--, then Equation (2.26) leads to
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k(T)= DTK (T) + K (T)D - xiBR-1BT-x z  TFH z

z xz x z x
K (0) = 0
Z (2.84)

which is asymptotically stable if, and only if, it satisfies

CONDITION 2.5 A necessary and sufficient conditior that

a steady-state solution Kz exist is that Kxz exist and

Re [Xi(D) + Xj(D)] <0;

for any i = 1, 2, ..., ; j= , 2, ...,p

(including i = j) (2.85)

i.e., that every eigenvalue of D have a negative real part.

Note that this is a more restrictive condition (on the

eigenvalues of D) than Condition 2.2.

If KXz exists, then the following matric algebraic

equation results from Equation (2.84)

DzTK + RZD = RX T xz BR()TxzB KxRFH] (2.86)

which has a unique solution Kz if, and only if, it

satisfies

CORLLARY 2.5 A necessary and sufficient condition that

the linear matric algebraic Equation (2.86) has a unique

solution Kz, for any matrix KxzTBR-IBTRxz

-[(FH)T~xz + K xzTFHj is that
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Xi(D) + X.(D) # 0;

for any i = 1, 1, ... , ; j 1,2, ... , ; (2.87)

(including i = j)

which is automatically satisfied if Condition 2.5 is met.

2.6.3 The Steady-State Control Law. If the conditions

for existence of Kx, KXc and Kxz are satisfied, then

the steady-state control for the set-point/servo-tracking

disturbance utilizing problem exists and can be expressed as

U0°=- -lBT [ (x + cc 4 izz ]. (2.88)

Furthermore, the steady-state gains Kx, Kxc and Kxz

are found as the unique solutions of the matric algebraic

Equations (2.37), (2.60) and (2.72), respectively.

The performance index for the steady state set-point/

servo-tracking problem is

j T( ( + ,J'T t ) (  + u(t)Ru(t)] dt.(2.89)

A finite value of J in the infinite-time problem re-

quires that the set-point/servo-command vector c(t) -- 0 as

* Ths can be seen by considering, for example, the

problem of regulating the plant state x to a non-zero set-

point Xsp, where xsp is not a natural equilibrium point.

4
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Maintaining x at Xsp , as T--, requires a constant value of

control u in this case, causing the integral term in J (an

integral over an infinite time interval) to be infinite in

value. This property may be summarized by stating that the

performance index J Equation (2.89) for the steady-state

set-point/servo-tracking disturbance-utilizing problem will

be infinite if the system matrix E of the set-point/servo-

command model does not have eigenvalues with negative real

parts.

Similarly, a finite value of J in the infinite-time

disturbance-utilizing problem requires that the disturbance

state vector z(t) - 0 as T--. For example, a constant dis-

turbance in the steady-state disturbance-utilization problem

leads to a constant control u(t) as T-0, which in turn leads

to an infinite value of J. Thus, we may summarize this

property by stating that the performance index J (Equation

2.89) for the steady-state set-point/servo-tracking

disturbance-utilizing problem will be infinite if the system

matrix D of the disturbance model does not have eigenvalues

with negative real parts.

If the steady-state problem leads to an infinite value

of J, then Equation (2.88) is no longer a rigorous expres-

sion for the optimal control, but may serve as a reasonable
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approximation for engineering purposes. Anderson an, Moore

[17; pg. 265] state that, in this case,

The only general optimal control interpretation of
these results is that they are the limiting results
of the finite-time optimal servo problem case. That
is, they have properties very close to the optimal
systems designed for a large terminal time T.

2.6.4 Some Methods for Determining the Steady-State

Equilibrium Values

2.6.4.1 Explicit Solution for Kx. The solution

of the algebraic Riccati equation

-1iT- T -- T(A - BK) Kx + KxA + C TQC = 0X X X(2.90)

may be found in explicit form as follows [9; pg. 121].

Consider the matrix

M A BR- 1 B TT B B

__ QC T (2.91)

Let T be any matrix which transforms M into its Jordan form

L, so that
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-1
L = T MT (2.92)

Then, using the partitions of L and T, write

-A BR_ B T I T 2  IL 1  L 2
T  i(2.93)

TQC AT T3 T4] T3 T 4 LF L4

Then, provided Tj is nonsingular, the matrix

Kx = T3TI -  (2.94)

is a solution of Equation (2.90).

Other methods of explicit solution for Kx may be found

in [9) and [17].

2.6.4.2 Explicit Solutions of thf Linear Matric

Algebraic Equations. The linear matrix algebraic equations

for Kxc, Kxz, Kc, Kcz, and Kz may each be express-

ed in the general form

NK + KP = CK (2.95)

The solution K, if it exists, is unique and is expressed by

tli01; pg. 175, Theorem 6)
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K =- e N t CK e P t dt. (2.96)

This is seen by considering the equation

Z = NZ + ZP , Z(O) = CK (2.97)

Which may be integrated between t = o and t = ®; assuming

that lim Z(t) = o, the result is

-C K = N (J Zds) + j Zds) P (2.98)
0 0

and it is seen that

-/ Zds - - Nt CK ePt dt (2.99)
0 0

satisfies Equation (2.95).

Special Cases

Under special conditions such as E = 0 or D s 0, simpler

expressions may be obtained. For example, if E 0 the

equation for Rxc (Equation (2.60)) becomes

-TA CLTK = C T QG (2.100)

..... -- CL xc,
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and if (ACLT)-l exists, then

= (ACL T CTOG = [(A- BR BK)] CTQG (2.101)

which can be solved by direct matrix operations. As a

second example, if D a 0, the equation for Kxz becomes

ACLT K = KxPH  (2.102)

and if (AcLT)-I exists, then

K - - - BR_1BTKX)T - KXFH (2.103)

which, again, can be solved by direct matrix operations.

2.6.4.3 Computational Methods. One way to com-

pute the steady-state solutions of the matric Riccati and

the linear matric equations is to use a digital computer to

integrate the backward-time equations until near-constant

values are obtained. This approach has been successfully

used with second- and fourth-order Runge-Kutta integration

algorithms.
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Other approaches are available for solving the

algebraic matric equations, such as the singular perturba-

tion method ([171, Chapter 15), which can lead to con-

siderable savings in computer time in obtaining approximate

solutions of matric Riccati equations.

2.7 The Concepts of Burden, Assistance and Utility in

Disturbance-Utilization Control Theory

The solution Equation (2.18) of the Hamilton-Jacobi-

Bellman equation involves the partitioned matrix P(t). The

partitions of P(t) may be substituted in Equation (2.18) to

obtain the expanded expression

V(x,c,z,t) = (xTKxx + cTKcc + 2xTKxcc)

+ (xT Kxz + CT K cz)z + zT K z (2.104)

The solution Equation (2.104) is the value JO of the

performance index J obtained under optimal control u = u
°

at the general initial conditions (x, c, z, t). The last

term in Equation (2.104) is due to disturbances alone, and

is equal to, or greater than, zero. Since it does nothing

but increase the minimum value of J, Johnson has defined it

as the "burden" JI [71

A ZTK z (2.105)z

The term (xT K + cT Kcz )z in Equation (2.104) is

produced by interactions between the plant state x and the

............................................
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disturbance state z, and between the set-point state c and

the disturbance state z. This term involves bilinear forms

which may be negative, zero or positive at any time t. When

this term becomes negative, it acts to further reduce the

minimum value JO (x, c, z, t) of J in Equation (2.104);

that is, negative values of this term actually provide

assistance toward the objective of obtaining a minimum value

of J. Therefore, Johnson has called the negative of this

term [7] the "assistance"

-(XK + cTK cz )z

x(tO ) = x; c(tO ) = c; z(tO ) = z (2.106)

The sign of the assistance in Equation (2.106) may itself be

negative, in which case it has the effect of an additional

burden.

The first term in Equation (2.104) does not involve the

disturbance state z at all, and is, in fact, the minimum

value of J that would be obtained when no disturbance is

present. Therefore, any constructive action by the dis-

turbance will be reflected in the difference between the V

expression when the disturbance is present and that same V

when the disturbance is absent. Johnson has defined this

latter difference as "utility" 4f(7]:

-W I V Iw(t) 0 -V w(t) 0 (2.107)

Thus, utility can be written as

LA
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= -(XTKxz + CTKcz)Z - zTKzz (2.108)

or, symbolically,

(2.109)

Positive utility results when the assistance _ : is greater

than the burdens. Whether or not positive utility is

achieved at any time t during the control interval [to, TI

depends on two general characteristics of a particular

problem:

(1) the magnitudes and signs of the elements in the

gain matrices and

(2) the instantaneous location of the (x, c, z) vector

in relation to those regions of positive and negative util-

ity as determined by (2.108).

2.8 Utility Domains in Extended State Space

The topological nature of the domains in (x, c, z) -

space in which positive utility is achieved can be de-

termined by examining the equations of the boundaries of

those domains. Since the function (2.108) is continuous

those boundaries are defined by collections of points in the

(x, c, z) space where utility is zero. Such points separate

domains of positive and negative utility, in general, and

are defined by

- T T
(x K xZ + C Kcz )Z - z K: z (2.110)
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This latter equation may be written as

[.T IT ' + zTK] z =0(21)

Solutions of Equation (2.111) may be considered with re-

spect to two distinct conditions on the dimensions of Kxz,

Kcz and Kz: the case where P< (ni +v) arnd the case where

P >(n + v):

(1) If p < (n + v), Equation (2.111) is satisfied by z

0 and by

[xTjcT] = ~ z KZ Kc < (ni + v) (2.112)

provided [ K XzT [tKxz] a aia ak Note that
LKcz cz] a aia ak

rak x rankj3]
rak-z [KX]TKxz] LT (2.113a)

an tha has dimensions c

(n +,v) x P ; hence maximal rank for Equation (2.113a) in

this case is p.* For the zero set-point regulator problem, c

=0, and therefore the -?/- 0 boundaries are defined by the

two expressions

z - 0

and

x - zK 2  K Tx~ KT; (2.113b)P < n]
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provided Kxz has maximal rank (which in this case is D).

If D = n, expression Equation (2.113b) reduces to

xT=- z TKz Kxzj (2.114)

p = n

(2) If P> (n + v), the maximal rank of[Kcz]

is n + v, and therefore, in this case tKz] [Kxz-l

does not exist, so an explicit solution for xT is not

available. However, Equation (2.111) is satisfied by z 0

and by

= [xTIcT] [~*Kx 1: L~Kcz] , -

(2.115)
P > (n+v)

provided Kz-1 exists.

It follows from Equations (2.112) and (2.115) that, in

the general case, the domains of positive utility are

wedges, lying between linear subspaces in (x, c, z) space.

In the special case n = v = o - 1, the positive utility

domain, as shown in Figure 2.1, lies between the plane z = 0

and the intersecting plane defined by Equation (2.112).

Zero utility, for n - V = P = 1, corresponds to the points

satisfying

z- 0 (2.116)

Z - -2x kxz -2c k cz (2.117)
z z

. .. . i
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z

Figure 2-1. Domains of utility in (x, c, z) space for n =
v = p=1

which are the equations of the planes in Figure 2.1. The

"tilted" plane Equation (2.117) intersects the c, z plane

along the line

k
z = -2c (2.118)

kz

and intersects the x, z plane along the line

k
z -2x (2.119-)

k z

The degree of "opening" between the two planes of Equations

(2.116) and (2.117) may be described in terms of two angles,

Oxz and Gcz , defined by

--Mug
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dz kxz

tan -xz = dx = -2 kz (2.120)
c=0Z

dz k"
tan = - -2- (2.121)

These angles are shown in Figure 2.2.

z2

Figure 2-2. Description of positive utility domain size by
0xz, Ocz"

Since kxz and kz are never negative, 8xz is always

non-positive. On the other hand, kcz typically changes

sign during the control interval (to, T), so that Gcz

typically changes sign during this interval.

Description of the positive utility regions for the

general case appears to be infeasible due to the associated

geometrical complexities. In general, these regions of

positive utility are time-varying regions, since the gains

Kxz, Kcz and Kz are time-varying solutions of matric

differential equations. These regions may, or may not col-

lapse as t - T, depending on the properties of the set-

point/servo-command process and the disturbance process.
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Some dynamic properties of the utility function are

discussed in the next section.

2.9 Dynamic Properties of the Utility Function

It follows from the definition of the utility function:

T -(x z + CTcz ) z - z TK z (2.122)

that, if the disturbance w(t) is asymptotically stable,

i.e., z(t) - 0 as t- -,one has the following

PROPERTY 2.1 If the disturbance w(t) is asymptotically

stable, such that

lim z(t) = 0

t - 0 (2.123)

then the optimal trajectory xO(t) has the property that

1im W (x(t), c(t) , z(t), t) = 0;
(2.124)

t -0 C

for all bounded c(t).

The known terminal conditions, at t = T, on the matrices

Kxz(t), Kcz(t) and Kz(t) are

Kxz(T) = [0] nxp

(2.125)

K cz(T) = [0]\,XP (2.126)

(2.127)

K z(T) = 00X0

which leads to
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PROPERTY 2.2

#/(x(T), c(T) z(T), T) 0 (2.128)

Note that the value of v approaches zero continuously as

t -T, since Kxz(t), Kcz(t) and Kz(t) are continuous

functions, each of which approaches zero as t * T. The

domain of positive utility for a specific problem may be

very large as t o T, but at the exact time t = T, no points

in (x, c, z) space have positive utility.

For t < T, the value of w at a particular time depends

on where the composite state vector lies in relation to

domains of positive and negative utility. The conditions

for obtaining positive utility are stated in

PROPERTY 2.3 The existence of a positive utility domain

at a particular time tI < T does not necessarily imply

that the value e/(x(tl), c(tl), z(tl), t1 ) of the

utility function is positive at t -t : realization of a

positive value of Walso requires that the state vector at

t - tl(x(tl), c(tl), z(tl)) lie in the domain of

positive utility.

It is interesting to inquire if the evolution of 41

(x(t), c(t), z(t), t) can be described by a differential

equation expression. One differential equation which , sat-

isfies can be derived by taking the time-derivative oZ V

(Equation 2.110). Part of the result may be recognized as

-41, resulting in
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d Y/
dt + = (2.129)

where

= -xlKxz _ KxFH]z - cT [Kcz+ KXcT(BR 1BTKx z- FH)] z

(2.130)

zT Z+ KxzTBR-1BTKxz [FH TK +K TFH z

The value of d */dt as t - T is found by substituting (x(T),

c(T), z(T), T) = 0 and (T) in Equation (2.129), resulting in

PI OPERTY 2.4

d- = x(T) - Gc(T)] T [SCFH]z(T)

t=T

={y (T) -Yc(T] T[SCFH]z(T) (2.131)

=[e(T)] T[SCFH] z(T)

where y(T) is the plant output Equation (2.2) at t = T,

Yc(T) is the output Equation (2.6) of the servo-com-

mand/set-point process at t = T and e(T) = y(T) - yc(T) is

the servo-command (or set-point) error at t = T. Note that

the slope of * at t = T depends directly on the e(T); if

*e(T) is small, d /dt will be near zero at t = T.

The value of the utility function in the steady-state

(as *T-Po) may be found, subject to the conditions of the fol-

lowing

PROPERTY 2.5 If the steady-state gains Kxz, Kcz and

Kz exist as the backward time T-, then

- . ... * _,____,__ -
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I= -(x Txz + CT cz)Z - z T-zz; for T • (2.132)

Thus, the value of utility in the steady-state problem may

be positive, negative, or zero, depending on where the

trajectory lies in (x, c, z) space relative to the steady-

state domains of positive and negative utility.

It is also possible to obtain an expression for the

time-derivative of utility for the steady-state problem,

subject to the existence of certain steady-state gains.

Equation (2.129) may be evaluated under steady-state

conditions described in the following

PROPERTY 2.6 If the steady-state gains Kx, Kxz,

Kcz and Kz exist as backward time T-, then

= - xz D + (A-BR BKRT) KTxz]Z

- TK D + E T]z (2.133)

- T[D + D Tz]Z

for T

Thus, the time-derivative of utility in the steady-state

problem may be positive, zero, or negative, depending on how

the matrices in Equation (2.133) are structured and where

the trajectory is located in (x, c, z) space.

The Concept of Maximum Utility. The condition for

achieving maximum w with respect to the disturbance state z

may be determined by taking the gradient of W (Equation

2.110) with respect to z:
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T T TVz = -xK -cTKc - zTKz (2.134)

The second gradient of * with respect to z is

vz [vz]= -Kz

which is negative-definite, since Kz is positive definite.

Therefore we may state

PROPERTY 2.7 The critical point condition for a maximum

of ' with respect to z is

T T
K x + Kczc + KzZ= 0 (2.135)Kxz cz•

Equation (2.135) describes how the plant state x should be

related to the disturbance state z and the set-point/servo-

command state c to achieve maximum utility V at each time t

ett o, TI.

Additional Properties of W. Certain additional

properties of the utility function w seem intuitively to be

true. For example, it seems that tor a certain specified

terminal state-weighting matrix S, that the value of the

utility function at each time t e[t O , TI would depend on

the relationship between Q and R in the performance index J,

with Q = 0 leading to higher values of w

Some numerical examples which show the relations between

specified control objectives (such as utilization of dis-

turbances and set-point regulation) and the values of S, Q

and R are presented in Chapter III.



CHAPTER III

SOME SPECIAL CASES OF DISTURBANCE-UTILIZING CONTROL

3.1 Summary of Chapter III

This chapter describes the application of disturbance-

utilizing control techniques to several specific examples.

In particular, the following are considered: (a) A scalar

regulator with a constant disturbance, in which both zero

set-point and non-zero set-point operation are considered:

(b) A scalar regulator with an exponentially-decaying

disturbance, with zero set-point and non-zero set-point.

(c) The zero set-point regulation of a second-order plant

with a vector (two-dimensional) disturbance. Expressions

are obtained for the limiting values (or the limiting time-

derivatives when no limiting value exists) of the gains Kx,

Kxc, Kxz, Kc , Kcz and Kz for cases (a), (b) and (c). Cor-

responding expressions for systems beyond the second order

present formidable computation difficulties.

These examples demonstrate several of the characteris-

tic properties of disturbance-utilizing controllers dis-

cussed in Chapter II, including positive-utility conditions,

the existence of steady-state values of system gains, the

impact of disturbance waveform shape on the effectiveness of

disturbance-utilizing control, and the potential for

significant control energy savings.

67
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3.2 Scalar Regulator with a Piecewise-Constant Scalar

Disturbance.

3.2.1 General Results. Consider the scalar system*

:kx + u + w(t) (3.1)

y a X (3.2)

where w(t) is a piecewise constant scalar disturbance which

is modeled by the system

w - Hz - z (3.3)

- Dz + a(t) - a(t) (3.4)

where H - 1, D - 0, and a (t) is a sparse sequence of com-

pletely unknown impulses. The primary control objective is

set-point regulation to a specified (given) state Xsp. The

secondary control objective is to accomplish the primary ob-

jective while efficiently utilizing any disturbance effects

which may be available. The two objectives can be achieved,

using linear-quadratic theory, by minimization of the

quadratic performance index

*Scalar systems of the more general form x - a x + u + w, a
- constant, can be put in the normalized form, Equation
(3.1) above by introducing the time-scaling t - T/ 0; a - a,
and setting i -P/a.
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2 2 2J 3- 2s e (T) + ht ofq es 2 (t) + r u (t)]dt (3.5)

with respect to u, where s > o, q > o, r > o and esp A

Xsp - x(t).

The family of piecewise-constant set points [Xsp]

are modeled by the fictitious dynamical system

xsp G c - c (3.6)

6 E c + ii(t) - 4(t)(37

where G - 1, E - 0, c is the set-point "state" and u(t) is a

sparse unknown sequence of impulses.

This problem is solved by applying the theory discussed

in Sections 2.4 and 2.5 of Chapter II. An augmented vector,

(Equation 2.8), with elements x, c and z, leads to an aug-

mented system (Equation 2.9) and a performance index

(Equation 2.10) which is equivalent to Equation (3.5). The

minimization of the performance index J subject to the

augmented system Equation (2.9) is accomplished by the

Hamilton-Jacobi theory. The solution of the Hamilton-

Jacobi-Bellman equation is expressed as the symmetric

non-negative definite quadratic form

V(X t) - (t) x (3.8)



70

where x is the augmented vector and P (t) is chosen to

satisfy the Hamilton-Jacobi-Bellman Equation (2.12). p can

be written in the form of a 3x3 matrix for the problem at

hand as follows:

bkX(t) k xc(t) kxz(t)
k- Ixc T(t) k C(t) kc C(t)i

L kxzT (t kcT(t)) k z W

P(T) - T sa;

a - C IG Ia] (3.9)

Substitution of Equations (3.8) and (3.9) into the

Hamilton-Jacobi-Bellman Equation (2.12) results in the fol-

lowing set of six unilaterally-coupled differential

equations:

1k- (-1 + k X)k -kx - q k (T) s (3.10)

-(-1 + k )k) + q ;k (T) -- s (.1xc r X xc xc

(-1 + -1 k ) k - k; k (T) - 0x xxz (3.12)

1 1 2kc - kxc - q ; kcc CT) -s(3.13)
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k -.) k k (T) - 0 (3.14)
cz xc r xz cz

S 2

k - 2kxz ; k (T) - 0 (3.15)

The six scalar equations (3.10) - (3.15) correspond to the

general matric Equations (2.21) - (2.26), with A 1 1, B - 1,

R - r, C 1, Q q, S - s, E - 0, G - 1, F - 1, H - 1 and

D 0.

The optimal control, Equation (2.17), may be written in

terms of the solution V of the Hamilton-Jacobi-Sellman equa-

tion. Thus, using the relation V V = P - in Equationx
(2.17), the optimal control for the present problem may be

written as

o  b (kx + c + kz)S- x kxc xz (3.16)

The solutions of Equations (3.10) - (3.15) which must be

determined over the interval t < t < T are obtained by
0

backward -time integration of Equations (3.10) - (3.15)

"starting" with the known end conditions at t = T.

The backward-time equations associated with Equations

(3.10) - (3.15) are obtained by the substitution t - T - T,

where t > 0 is "backward time." This latter substitution

transforms Equations (3.10) - (3.15) to the form (note that

( d /dT in (3.17) - (3.22)):
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(T) (I- 1kx (T)) k (T) + kx(T) + q ; (0) - s (3.17)

k xC(T) = ( 1- -k x (T)) kxc (T) - q ; kxC (0) = - s (3.18)

k xz(T) = ( 1- -k x(T)) k xz(T) + k x(T) ; k xz(0) = 0 (3.19)

(T) k 2  (T) + q ; k (0) = s (3.20)kc(  r xc

kz(r) = k (T)( 1 k () ; k (0) = 0 (3.21)Czxc r xz cz

(T)= -.1 k2 z ( T ) + 2k (T) ; k (0) = 0 (3.22)
z r xz xz z

The required solutions of Equations (3.10) - (3.15) are now

found by solving Equations (3.17) - (3.22) over the positive

interval 0 < r < (T-to) using the "initial-condition "data

at T - 0.

3.2.1.1 Consideration of Limiting Values as T -
®

It is readily verified that (3.1) is completely control-

lable. Therefore, since q > 0, it is assured [15] that

Equation 3.17 has a solution kx(T) which asymptotically

approaches a certain positive value "X as T . That

is, the limit
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lim k x(T) - kx , constant >0,

T -' 00 (3.23)

will exist, where kx is the unique, positive definite

solution of the "steady-state Riccati equation"

(1 kx) kx + kx + q - 0 (3.24)

The positive solution of Equation (3.24) is readily found to

be

kX = r ( 1 + .q/r + 1( . (3.25)

For the special case where q - 0, Equation (3.25) yields

k = 2r , q - 0 (3.26)

The result of Equation (3.25), may be verified by start-

ing with the general solution of the Riccati differential

Equation (3.17) and evaluating kx(T) as T - . The gener-

al solution of Equation (3.17) is given by (8; pg. 7771

_: -- 1-8
S+ i + ( - i) r  -)e 2 ST

k (T) " r F (3.27)
xs

r )e_28T

r
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where T = T -t, and for our case, 8 u+Jq/r + 1 > 0.

Letting T - in Equation (3.27) yields the limiting solution

lim k x(r) = r ( 1 qr 1)

T - Go (3.28)

which is identical to the solution Equation (3.25) of the

algebraic Riccati equation. Note that Equation (3.27) has

other solutions that do not satisfy Equation (3.28).

The conditions for the existence of steady-state values

of kxc, kxz, kc, kcz and kz (Conditions 2.1 - 2.5

in Chapter II) may now be applied to the last five

equations, (3.18) - (3.22).

Condition 2.1 indicates that the solution kxc(T) of

Equation (3.18) asymptotically approaches a unique steady-

state value kixc if, and only if,

1 - <0 (3.29)

However, satisfaction of Equation (3.29) is guaranteed for

this example because substitution of Equation (3.25) into

Equation (3.29) yields

1 - =-/q/r+ < 0. (3.30)r x

The unique solution of Equation (3.18) is easily determined

to be
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k (r)= = q + Ce (  ik)
xc(T) (1 k 4-C (3.31)

where

q
Cxc - (1 - 1 kx) (3.32)

Thus, the limiting value kXc is obtained from Equation

(3.31) as

lim k 
q-=

xc 7
X!,3 .33,

Exoression Equation (3.25) for kx nay be substit/ted into

Equation (3.33) to obtain

-q
xc r + 1 (3.34)

For the special case of q = 0, (3.34) reduces to

- 0 q= 3.35)

Application of Condition 2.2 of Chapter iI shows that a

well-defined steady-state value kxz will exist for tnis

Ia
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example problem, because the disturbance model has D = 0,

and kx exists. The unique solution of Equation 3.19 is

found to be

- k (1- k )T (3.36)k (0)= + C e (r "
xz I (1 k) xz

where

C =x
XZ (1 - (3.37)

r X

Letting T-- in Equation (3.36), the steady-state value

kxz is determined to be

K = lim k (T) = r (+ g//r + 1). (3.38)
xz - xz /q/r + 1

The special case q = 0 reduces (3.38) to

kxz =2r q=O . (3.39)

Condition 2.3 of Chapter II indicates that existence of a

steady-state value kc of kc(T) requires that every

eigenvalue of the matrix E in the set-point dynamic model
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Equation (3.7) have a negative real part. This condition is

not satisfied for this example (see Equation (3.7)). as we

have E = 0. Thus, for this example, no steady-state value

kc ofk( ) exists, in general. We may, however, find

the limiting steady-state slope k of the solution kc(T)

as T . For this purpose, the steady-state value of

rxc(:) may be substituted into Equation (3.20) to obtain

2
q

k = lim k (T) -c c q +r

(3.40)

which snows that in backward-tie - the waveform zf <, -)

approacneF a positive-siope ramp ;.. negative-slope a~n in

forward time). Although Ecuiation k3.20) does not have an

asymtoticall' stable steady-sta-e solation in 'eneral, th.e

special case a = 3 does lead to the condition that the l'zu-

ting rate Equation (3.40) is zero. The corresponding value

of lir Kc() in that case must be determined by integra-

tion.

The solution kcz(t) of Equation (3.21, -as no

asymptotically stable steady-state solution because E and D

are both zero in this particular example. However, the

limiting slope kcz(r) as T-- is found by substituting the

values of ,(xc and kxz into Equation (3.21) to obtain
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r q
k cz lim k iT) = > 0.q + r (3.41)

It may be observed from Equation (3.41) that the special

condition q = 0 yields a limiting rate which is zero. The

corresponding value lim kcz(T) must be determined by

integration.

An asymptotically stable limiting value kz for the

solution kz(T) does not exist for Equation (3.22) because

D = 0 in this example. As before, the limiting rate kz(T)

as T -0 0 can be calculated rather easily. Namely, if kxz

is substituted into Equation (3.22) one obtains

- • -r (i +q/r + 1)

k z  lim k z (T) =
T 00 q + r

+ 2 r (1 + /q/r + 1)

(3.42)

As before, the special case q = 0 results in a zero value of

the limiting rate Equation (3.42); however, more generally,

Equation (3.42) describes a positive-slope ramp (a negative-

slope ramp in forward time) which, of course, is unbounded

as T 0 .
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Table 3-I summarizes the limiting steady-state gains for

this example with piecewise-constant disturbances.

Figure 3-1 summarizes the waveform properties of the

forward-time gain histories in this example, for general

non-negative values of s, q and r.

Only the first three gains kx(t), kxc(t) and

kxz(t) are required in computing the optimal control u*(t)

for this example (see Equation (3.16)); however, the two

Ngains" kcz(t) and kz(t), along with kxz(t) are useful

in computing the utility functionw.

The utility function '8 for this example is found from

Equation (2-108) to be

2

,- -k ,xz - k ..cz - k z'. 3.43)

The positive-utility domains for examples ot t:s type were

determined in Chapter II as the "opening" between two

planes, as shown in Figure 2-1. The degree of *3pening" be-

tween the planes was expressed in terms of two angles, de-

fined by

kz

tan i - -2 --k j3.44)
xzz
xZ k

tan i - -2 c (3.45)
cz kz



t0

,rABLF 3-1 : TEAOY-STr' ATE ;AIN:8 IVR SCALAR ,SE'V'-I\)IN*V

EIEGU 1.AT') H W1IH t CONSTANT Dl ISTU RBANCE

- ,t I nt

K ha', | 1114 t QXU,'t, 0



81

M It) Imit ily slope 0

)limiting slope 0 0 r

-~ 4TT "~~:?so~ i - q

_ _2_ -s

0 U T

Note; limiting lope ean2 as T -

k a(t), 
k t) li miting s lope

limiting slope 0 i € _ !-2

I op -e 
tl

i / T

Figure 3-1. Typical forward-time gain histories for 
a

scalar set-point regulator with a constant
disturbance and disturbance-utilizing

control.
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which are illustrated in Figure 2-2. In general,

non-negative values of q and r result in a bounded

steady-state value of kxz but an unbounded value of kz

as T -0 (see Figure 3-1); hence, in the steady-

state;

8 - lim 8 (T) - 0 , general non-negative
XZ T * 0xz values of r, q . (3.46)

An interesting special case for this example occurs for the

value q - 0, causing the right side of Equation (3.42) to

then be zero, and giving the non-zero steady-state value of

Equation (3.46) as

-xz lim 8 xz(T) - tan (-2) - -63.430, q - 0.

Equation (3.44) is indeterminant at T - 0 (i.e., at the

terminal time t = T); however, by applying L'Hospital's rule

to the ratio

(1 k)k + kxz ( r x xz x

-1  2 +2
z r xz 2 kxz

(3.48)

it is easily determined that



83

0 0 )(3.49)

and therefore, if s > 0, Equation (3.44) yields

z M lira xz - 900 s >0. (3.50

In a similar manner, Equation (3.45) yields, in general,

the indeterminant

lint tan e c (T) - 2-
'T-0'M (3.51)

which, by application of L'Hospital's rule gives

q

cz " lim cz (T) -

c z ZL 1 4 r + + 2 1 r +
Lv~q/r + 1 J Lqlr i -

(3.52)

The denominator of Equation (3.52) is positive for all posi-

tive r and q. When q a 0, the denominator is zero, in which

case Equation (3.51) yields the limiting value ecz - 0.

Therefore, the range of variations of ecI is, in general,

-900 < jcz 0 0. (3.53)
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The value of 6cz at T - 0 (i.e., at terminal time t T)

is found by applying L'Hospital's rule to obtain

lim tane -2 lim/kcz. 2s
T- 0 C°z T-0-kz (3.54)

which, for s > 0, leads to the value

Bcz(t-T) - lim c (T) - +900T-0 cz(3.55)

It is interesting to note that e cz(t) may change sign over

the interval t intto,T].

The foregoing properties of exz(t) and Ocz(t) are

summarized in Table 3-2, for several combinations of q, r

and T. Some typical domains of positive utility for this

example are shown in Figures 3-2 and 3-3, for the case of

large values of T(near steady-state) and small values of

T (near terminal-time), respectively.

3.2.2 Some Specific Numerical Examples

3.2.2.1 Zero Set-Point Regulator; Scalar Plant,

Constant Disturbance. Computer results for these numerical

examples were obtained from a CDC-6600 program using Runge-

Kutta fourth-order integration with a computation interval

of 0.02 seconds for integrating the plant equations and the

gain equations. The ideal case of direct on-line
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TABLE 3-2. PROPERTIES OF THE UTILITY DOMAIN "OPENING"
ANGLES 6xz(t) AND eCZ(t) FOR A SCALAR
SET-POINT REGULATOR WITH CONSTANT
DISTURBANCE

t ( )cqvrec5s)

fMr r
(st cady-state)

00.00 q 0 r , 0

-63.43 0 r '10

0 (Deqrees)

for : " 0 (at l r
terminal time-

-90.00 q 0 r 0

0CZ (Degrees)

for q r
(steady-state)

-63.43 1 1

-63.43 10 1

-84.8L 1 10

-811.43 1 00

00.00 0 r 1 0

0CZ (Deqrees)

for : - 0 (at r
terminal time)

+90.00 q 0 r 0
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z z

Figure 3-2. Typical domains of positive utility in x-z and
c-z state space for large values of backward
time , near steady-state); scalar plant
set-point regulator, constant disturbance,
q > 0 and r> o.

.1 z

x C

e

Figure 3-3. Typical domains of positive utility in x-z and
c-z state space for small values of backward
time (near the terminal time); scalar plant,
set-point regulator, constant disturbance,
q > 0 and r > 0.
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measurements of the entire plant state x and the entire dis-

turbance state z was assumed for these studies. This as-

sumption permitted determination of the performance of the

disturbance-utilizing controller without regard to the

imperfections introduced by the state-reconstructors.

Numerical solutions of the three differential equations

((3-10), (3-12) and (3-15)) are presented in Figure 3-4 for

the case s - i, q - 1, r = 1, T = 6.0. These specific re-

sults may be compared with the typical histories sketched in

Figure 3-1.

3.2.2.1.1 Negative Disturbance, Positive x(o).

Numerical results for the zero set-point regulator with

s 1, q - o, r - 1, T - 6.0, w(t) - -16.1 and x(o) - 30.0

are shown in Figures 3-5 and 3-6. Although the structure of

this particular example results in the existence of steady-

state values for the three scalar gains kx, kxz and kz

when q - o (see Figure 3-5) this outcome is not typical for

the general case. It may be seen that the x-z state trajec-

tory (Figure 3-6) remains inside the positive utility sector

for each tintto,T] and thus the value of the utility func-

tion is positive for the whole control interval, except at t

= T. The control u° and state x for the corresponding

linear-quadratic (LQ) controller are shown as dashed curves

in Figure 3-6 for comparison. All parameter values for the

LQ controller are the same as those of the disturbance-

utilizing (DUC) case, except that the LQ example does not
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k (t) kx Wt

2- 2-

sec T' sec T

k Z(t)

4-

2-

t
0 1 2 3 4 5 6b

sec T

Figure 3-4. Numerical gain solutions for case of: scalar
plant, scalar disturbance, zero set-point,
s = ,q 1, r -1 and T =6.0.



89

utilize or otherwise account for the disturbance. Thus,

the LQ example uses the conventional LQ control u*LQ(t)
b2

a - b kx(t), where kx(t) is precisely the same time
r

function as kx(t) in Figure 3-5. The bias effects of the

constant disturbance are readily seen in the LQ control and

state histories (Figure 3-6); these effects do not appear in

the disturbance/utilizing controller, however. Table 3-3

summarizes the terminal-time performance of this example in

terms of the components Jm, Jq and Jr of the per-

formance index J, the terminal-state regulation error 4, the

value of the control energy EU consumed during the control

interval [0, T] and the "effectiveness" parameters 'T ,

SM and SE; the pertinent parameter definitions are as

follows:

J s e2 (T) (3.56)

T 2
Jq = cq x (t) dt (3.57)

T

= I T rCuO(t)]2dt (3.58)

EU = o u(t)]2dt (3.59)
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k (t) xz

2-

0 T 6' t 6 t

sec T see T

k (t)z

2

0 t
0 1 2 3 4 5 6

see T

Figure 3-5. Numerical gain results for scalar
zero set-point regulator with s 1.,
q 0, r 1, T - 6.0.
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U 0 , COTROLx PLANT STATE

20- 40

sec
0- 60

-20-;" DL-20

LQ

z X ZTRAECTRYE) "OPENING" ANGLE
Z RJCOYxz _______________

I I t

t=5 t =0
-10- / -40-

-20- t\ -1= -60-

t=2 -80

t-6 =4 -90

\t t'3. 5

j- UTILITY

1000.- -5
SSISTANCE, BURDEN

800. 8i(SITNE 00.-

A (ASISTANCE)

600. 600.-

400: .g(3URDEN) 400.-

200. 200.-

0: t 0- t

sec sec

Figure 3-6. Computed performance of disturbance-utilizing
scalar regulator with zero set-point, constant
disturbance; s 1, q =o, r = ,w(t) =-61

x(o) =30.0, T =6.0.
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TABLE 3-3. COMPARISON OF PERFORMANCE OF DISTURBANCE-

UTILIZING CONTROLLER AND CONVENTIONAL LQ

CONTROLLER; SCALAR ZERO SET-POINT REGULATOR,
WITH CONSTANT DISTURBANCE, w(t) = -16.1,
xsp - 0.0, s = 1, q - o, r -1, T - 6.0.

J J J J (T) T  xe= -x(T)

sp 1M EU 8E
% (FT) % %

DUC 0.0021 0. 192.4 192.4 92.3 -0.065 99.7 192. 91.1

LQ 313.6 0. 2155. 2469. 25.05 2156.

J(T) - Jm + jq +  r

2 T 2 T o2
- se (T) + f f qe (t)dt + f r u (t) dt

0 0

UIDoC b (kx + k Z)

01DU = -r x x

t - kx
ULQ r x

EU T T[ 0(t] dt

0
T - 2

ST JLQ - DUC x 100%
TLQ

4 Ixsp -x(T) ILQ -Ixsp - x(T)IDOC  x 100%

Ix p - x(T) 1LQ

-u EU
* EULQ DUC100

E EU x 100%

'i!Q
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"Total effectiveness" ST is defined as

T= LQ DUC x 100% (3.60)JLQ

"Miss-distance effectiveness" OM is defined as

I Xsp - x(T) ILQ - x sp - X(T)IDUC
JXsp - X (T) ILQ (3.61)

"Energy effectiveness" 'E is defined as

SUL- - DUC 100%E EULQ (3.62)

Positive values of 1T, gM or *E mean that the distur-

bance-utilizing controller has achieved a lower value of J,

absolute miss-distance or control energy consumption,

respectively, than the LQ controller. The maximum possible

values of fT, mfM or OE are, of course, 100%.* Note,

in Table 3-3, that the DAC controller obtains very large

positive values of fT, M and 9E . The disturbance

utilizing controller for this example uses less than 9

percent of the control energy required by the conventional

LQ controller. Moreover, the disturbance-utilizing

controller achieves a set-point error of -0.065 feet -- only

0.3% of the 25.05 feet set-point error of the LQ controller.

*Note, for example, that if JDUC is 10% of JLQ, T
90%; if JDUC is 90% of JLQ, 'T - 10'.
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3.2.2.1.2 Positive Disturbance, Positive xjo). The

previous case involved a constant negative disturbance which

resulted in a trajectory lying inside the positive-utility

domain in the x-z plane. We now consider the case in which

the sign of the disturbance is reversed; that is, where w(t)

has a constant positive value, with all other conditions

remaining exactly the same as in the previous case. The

time functions kx(t), kxz(t) and kz(t) are exactly the

same as for the previous case (see Figure 3-5), since they

do not depend on the specific wavefnrm of the disturbance.

The performance for this case is summarized in Figure 3-7

and Table 3-4. In this example, the initial conditions

(x(o), z(o)) lie in the negative-utility domain (in the

first quadrant). However, the disturbance-utilizing control

forces the x-z state trajectory into the second quadrant,

where positive utility is available. The disturbance-

utilizing control maneuvers the system so that positive

utility is "made available" for this case during the time

interval following 1.8 seconds. Figure 3-7 shows how the

x-z trajectory "doubles back" on itself between I and 6

seconds. Although the state is driven to zero at t I, the

terminal-time specification is not satisfied until t - 6,

when the problem ends. The DUC uses the "extra time"

between I and 6 seconds to place the trajectory within the

*> o sector of the x-z plane. Note the bias effect

(Figure 3-7) of the disturbance on the LQ control, which

results in a large positive value of x(T).
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Figure 3-7. Computed performance of disturbance-utilizing
scalar regulator with zero set-point, constant
disturbance, s - 1, q - o, r - 1, w(t) - +16.1,
x(o) - 30.0, T - 6.0.
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TABLE 3-4. COMPARISON OF PERFORMANCE OF DISTURBANCE-
UTILIZING CONTROLLER AND CONVENTIONAL LQ

CONTROLLER; SCALAR ZERO-SET-POINT REGULATOR

WITH CONSTANT DISTURBANCE, w(t) = +16.1,

Xsp - 0., x(o) - 30.0, s - 1, q - o,

r 1, T - 6.0.

J~ J(T) 6&T e - x(T) 0' EU 5
- (ft) 9

DUC 0.023 0. 2100. 2100. 52.0 -0.21 99.2 2100. 48.2

LQ 320.7 0. 4056. 4377. r -25.33 4056.

J(T) - m + Jq + Jr

T T

- ie 2 (T) + f 1 qe 2 (t)dt + 1 r u o 2 (t) dt

0 0

o0 'DC- (k x + k ~Z)

EU f [u 0(t)] 2 dt
0

Lo
I 8T LQ - JDUC x 100%

m  Ixap - x()I -Ix S - x(T)IDUc x 100%

Ixap - x(T)ILQ

EU Lo- E

E  
EULQ -EUDuC, EULQ x 100%

-A
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This may be compared with the previous case, where the nega-

tive disturbance caused the LQ controller to have a large

negative x(T).

The terminal-time performance for this case (Table 3-4)

shows that the effectiveness parameters ST, 'M and SE

are all positive, indicating that the DUC performs better

than the LQ controller on the basis of J(T), miss-distance

and control energy consumption. The control energy require-

ments are considerably larger for both the LQ and the DUC in

this case, because the amount of positive utility is re-

latively small. However, the disturbance-utilizing control-

ler expends only 51.8% as much control energy as the LQ con-

troller. Moreover, the DUC accommodates the disturbance to

produce a set-point error of -0.21 feet versus -25.33 feet

for the LO controller -- a miss distance only 0.8% as large

as the LQ miss distance.

3.2.2.1.3 Some Effects of Varying g/r. The

importance of the ratio q/r has been seen in connection with

the determination of the time-varying gains for the distur-

bance-utilizing controller. When q - o, varying r has very

little efiect on control energy EU, but when q > o, the q/r

ratio affects not only EU, but also Jq, Jr and xsp -

x(T). Table 3-5 compares the performance for three differ-

ent ratios of q/r in the disturbance-utilizing example under

consideration. Except for the q and r values, the

conditions of this example are identical with those
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of section 3.2.3.1.1, where w(t) = -16.1. When q is

increased from q = o to q = I, less relative weight is

placed on terminal set-point error in the performance index

J, with the result that the terminal miss-distance increases

to 3.31 feet. Another effect is seen in the increased

control energy EU required to keep the squared state x2 (t)

closer to zero during the control interval [o,T]. When the

q/r ratio is changed to 1/l0, the control energy requirement

is brought back down to a value only slightly larger than

for the case of q = o; but the terminal miss-distance then

increases slightly because its relative weighting has

decreased even further. This example illustrates the

various cost trade-offs which one must consider when

choosing values of s, q and r in disturbance-utilizing

regulator designs.

3.2.2.2 Non-Zero Set-Point Regulator; Scalar

Plant, Constant Disturbance. When the scalar system of the

previous examples is operated as a non-zero set-point re-

gulator, with a constant disturbance w(t) = -16.1 and a

set-point xsp = -10., the results of Figures 3-8 and 3-9

and Table 3-6 are obtained. Note that the kx(t), kxz(t)

and kz(t) time functions in Figure 3-8 are identical with

those of the previous examples (see Figure 3-5). In ad-

dition, the kxc(t), kc(t) and kcz(t) gains are re-

levant to the non-zero set-point case considered here.
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TABLE 3-5. THE EFFECT OF VARYING q/r ON THE DISTURBANCE-
UTILIZING CONTROLLER; SCALAR ZERD SET-POINT
REGULATOR WITH CONSTANT DISTURBANCE, w(t)
-16.*1, xsp =0., x(o) = 30.0, T - 6.0

s q r Jm J J J(T) xp - x(T) EU

1 0 1 0.0021 0. 192.4 192.4 -0.065 192.

11 1 1 5.48 359.8 364.3 729.6 3.31 364.

1 1 110 10. 80 1727.7 1970. 12708. 1 4.65 1197.

J(T) = m+j

.T T

= se 2(T) + f qe 2(t)dti r u 2(tdt
to to

T2

EU u 0 [(t)]2 dt
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Figure 3-8. Numerical gain solutions for case of: scalar
plant, scalar disturbance, non-zero set-point,
constant disturbance, s , 1, q , or r - 1,
T - 6. 0.
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Figure 3-9. Computed performance of disturbance-utilizing
scalar regulator with non-zero set-point, con-
stant disturbance; s - 1, q - o, r - 1, w(t)
-16.1, Xsp - 10.0, x(o) 30.0, T - 6.0.
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TABLE 3-6. COMPARISON OF PERFORMANCE OF DISTURBANCE-
UTILIZING CONTROLLER AND CONVENTIONAL LQ
CONTROLLER; SCALAR REGULATOR WITH NON-ZERO
SET-POINT AND CONSTANT DISTURBANCE; w(t) -

-16.1, Xsp = -10.0, x(o) = 30.0, s = 1,
q 0 o, r = 1, T = 6.0

J J () xsp -x(T) & EU -

-2
DUC 0.2122x10 0. 193.1 193.1 92.2 -0.065 99.7 193.] 91.0

LQ 313.6 0. 2155. 2469. 25.05 A 2155.

J(T) Jm Jq +Jr

T T

- se 2 (T) + f qe 2 (t)dt + f I r uo2 (t)dt

to to

D b (k x + k c + kxzz)
[DAC r - 7 xc x

UL = - b (kxx + kxcc)

4r T  r J x - DC

-TLQ DU x 100% !

M Ix sp - x(T) --s - x (T) _DUC 0
iXsp - x(T) LQx

A EU - EUDUC
E EULQ x 100%

.. .. . . + "- '" . . . -' . . .... . .. . ... . " + +" .. . il # .. . ' ]IlI1L O :'
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Figure 3-9 shows that the DUC obtains positive utility for

the 6 second control interval (except at t - T). The x-z

trajectory remains in the positive utility domain of the x-z

plane for the first 5.5 seconds of the control interval as

it moves through the fourth quadrant toward the set-point

(Xsp = -10). The c-z "trajectory" for this example is the

point (c - -I0, z = -16.1). This point "trajectory" lies in

the positive utility domain of the c-z plane during the last

0.9 seconds of the control interval. This may be verified

by noting that ecz is greater than 58.2 degrees (tan
- I

16.1/10.0) for the last 0.9 seconds, which means that the

c-z point "trajectory" is inside the positive utility

domain. The net result of the actions of the set-point

"command" and the disturbance is that positive utility is

"made available" for the whole control interval. The

constant disturbance has a very detrimental effect on the LQ

contcol and state histories (Figure 3-9), resulting in a

large set-point error. The terminal-time performance for

this example is shown in Table 3-6. Note that the control

energy EU required by the DUC in this example is only

slightly larger than that required by the zero set-point

regulator (compare with Table 3-3). This is apparently due

to the fact (observed above) that the x-z trajectory and the

c-z trajectory are complementary, in terms of the respective

time intervals during which they lie in positive utility

domains. The effectiveness parameters IT, eM and eE,

are all positive and quite large, reflecting the superior
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performance of the DUC in ter: s or performance index J,

set-point error and enerqy ConSumption.

3.3 Scalar Requlator with an Exponentially-Decayinq

Disturbance

3.3.1 General Results. In this example we consider L
tne scalar system of Equations (3.1) and (3.2), where the

disturbance w(t) is exponentially decaying, so that

-cit

w(t) = C1 e , '1>0 (3.63)

w = Hz , H = [ii (3.64)

z = Dz + o(t), D = -ci (3.65)

wherea (t) is a sparse sequence of impulses. The dual

control objectives of set-point regulation and efficient

utilization of availabie "disturbance enerav" are to be

realized, as before, by minimizing the quadratic performance

index J (Equation (3.5)). The s~t-point is represented as

the output of the dynamic system Equations (3.6) and (3.7),

and the control will be found as in Equation (3.16). The

set of unilaterally-coupled differential Equations (2.21) -

(2.26) for this example turns out to be

k (-1 +- k k - k - q k (T) = s (3.66)

k r
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k = (-1 + pi kx) k + q ; k (T) - -s (3.67)xc rx xc I
1r

( ++ k) - k ; k (T) = 0 (3.68)
xz r ( xz x xz

1 k2kc =-k - q ; k (T) = s (3.69)
c r xCc

k =ok + (-1 + 1 k ) k k (T) = 0 (3.70)
cz 2z r xz xc z

1k =2ak + 1 k 2  - 2k ; k (T) = 0 (3.71)z z r xz xz z

Equations (3.66) - (3.71) correspond to the general

Equations (2.21) - (2.26) with A = 1, B = 1, R = r, C = 1, Q

= q, S = s, E = o, G = 1, F = 1, H = 1 and D = -a. The

corresponding equations in backward time (r= T - t) are

k T1 k (r)) k (T)+ k (r)+ q; k (0) = s (3.72)kx(T r ( - x x x

1f 1xc (T) 1 kx (T)) kxc (T) - q ; xc (0) = -s (3.73)

k a k (T)) k (T) + k (T) (xz r x xz x (3.74)

k (0) = 0xz

1 2
kc ( T ) - - k + q ; k (0) = s (3.75)

Cr xc C



lot,

k-(k) 4 (1 -- k ) k k (0) 0 (3.7o)

' k + 2k ; k (0) - 0 (3.77)

r xz xz z

As; in the cJ; Of the con'tant di.-iturbance, tile 3tejdy-

stdte v1Lues ot k (r) and k () are found to bex xc

kx = r l + v , r + I1) (3.78)
x

-q
k - (3.79)XC ,i/'r + '

Equation (3.74) has the soiltion

/ 1 -( - - ,e -) x ( . 0

r x

a nd

kxz lir kxz (T)- K .
T( I- -r k)
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When Rx from Equation (3.78) is substituted in Equation

(3.81) the result is

r ( 1 + vq/r + 1)
k mxz a + Vqlr+ 1 (3.82)

AS T * ' it is found that no steady-state value exists for

k (t) for general values of q and r. However, the asymptotic

slope kc does exist in backward time, and is given by

2q
c lim k c (3.83)

r - - q + r

It is easily shown that Equation (3.76) has the solution

k (i kxc \i kxz - I1 + e- 'T (3.84)

and therefore

Cz ca a xc ( xz 1 3.85)
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Substituting the known values of kxC and kxz into

Equation (3.85) gives

[q/a 1 -C

q/r + 1 + q /r +  (3.86)

When the expression for kxz is substituted in Equation

(3.77) the result is

k z  -2cxkz - r[ + 2 (3.87)
+ q /r c + vq/r+i

Solution of (3.87), subject to the terminal condition

kz (T = o) - kz (t = T) = o, yields the expression

(T) (1-e 
1 q/r + 1

kz (T = 2

Sr + Jr + I (3.88)

+ 2rq/

La +vq/_ +l J
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In the limit T - , Equation (3.88) yields the steady-state

value

+iq / r + 1i iV-l +1

k = lir k (t) = +

-[: q/r + ] [ + "/r + 1

(3.89)

which is positive for all q > o, r > o, q > o. Table 3-7

summarizes the steady-state values of gains for the general

case ind for the special case of q = o. Note the existence

of steady-state values kc, kcz, and kz for the special

case q = o. These results may be compared with the constant

disturbance case (Table 3-1) where a = o. A noteworthy

special case can be seen in Table 3-7 corresponding to the

value a = I which leads to

k =0 , 1 , q-O
cz1 q

(3.90)

Figure 3-10 shows typical gain histories for the case of the

exponentially decaying disturbance.

For this example, steady-state values of 8xz (see

Table 3-8) are non-zero, for general non-negative values of

q and r. This behavior for the case of an exponentially-

decaying disturbance is in contrast with that for the case

of the constant disturbance, where the limiting value 8 xz
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TABLE 3-7. STEADY-STATE GAINS FOR SCALAR SET-POINT-
REGULATOR WITH EXPONENTIALLY DECAYING
DISTURBANCE.

For q = 0,
For 0 0, r 0, x 0 r 0 0, , > 0

k r (+ v Vr+T) 2 r
x

-q

rq/r + 1

r ( 1 + + 1) 2r
x + /qr + 1

k no limit exists 0
C

k +_ _ a

k rF/I + v' ,~r: +1~ 2 ( *12r
z +-(ot
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kcz (t) LIMITING k (t) SLOPE=

SLOPE=O I +. r+ + 4r+ I
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o 0' t 0t
T T

NOTE: "Limiting slope" means as T--; T=T-t.

Figure 3-10. Typical forward-time gain histories for a
scalar set-point regulator with an expo-
nentially-decaying disturbance and distur-
bance-utilizing control.
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is zero for general non-negative values of q and r. The

existence of finite values of kz prevents the positive

utility region from collapsing for large t, and the larger

the value of a, the larger the value of Oxz as T .

For q - o, it is found that

lim tan 6xz(T) =-2 (a + 1), q = o

(3.91)

and therefore, when a = o, the limiting value of exz is

-63.43 degrees, which is the same value obtained for the

case of a constant disturbance. Thus, for the exponential

disturbance, the limiting angle is more negative than -63.43

degrees.

Steady state values of 8cz are particularly sensitive

to a; the value a = 1 is the critical point which determines

whether positive or negative values of ecz are obtained as

T * . Table 3-8 lists some typical values of ;cz and

8 xz•

3.3.2 A Numerical Example: A Scalar Regulator with

Non-Zero Set-Point and Exponentially-Decaying Disturbance.

In this example, the scalar system of the previous examples

is operated as a non-zero set-point regulator with an

exponentially-decaying disturbance, where

*Note that kcz (in Table 3-7) changes sign as o changes from

values less than 1 to values greater than 1.
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TABLE 3-8. PROPERTIES OF THE POSITIVE-UTILITY DOMAIN
"OPENING" ANGLES G xz AND ecz FOR SCALAR
SET-POINT REGULATOR WITH EXPONENTIALLY DE-
CAYING DISTURBANCE

0 (Degrees)
xz

for i q r (

(steady-state)____________

-75.96 0 1 1 1

-87.44 01 1 10

-75 .96 00 r > 0 1

-65.56 0 0 1 0.1

E) x (Degrees)
for 'i- 0(at q r a
terminal time) ___

-90.00 0 q >0 r >0 c >O

%8 (Degrees)
fr7q r O.

(steady-state) _______

-68.96 0 1 1 0.1

+80.370 1 1 10.00

+90.00 0 q >0 r >0 Oci- 0

00.00 00 r >O0O c>

00 0 r> 0 1

e0cz (Degrees)

for 1 4 0 (at q r c

terminal time)________

+90.000 q >0 r 0 a > 0
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-O.it
w(t) - - 16.1 e = 0.1 (3.92)

and Xsp * -10.0. The numerical solutions of the six

unilaterally-coupled differential equations (3.66) - (3.71)

for this example are shown in Figure 3-11. Note that

steady-state solutions exist for all six gains in Figure

3-11. The performance of the disturbance-utilizing con-

troller is summarized in Figure 3-12 and Table 3-9. Those

results may be compared with the results obtained for the

constant disturbance (Figure 3-9 and Table 3-6). The x-z

trajectory for the present example lies in the positive

utility domain for about the last one second. Compared with

the constant disturbance case (Table 3-6) the DUC in the

present case requires sligntly more control energy, because

less "free energy" is available in the decaying disturoance.

Likewise, the LQ regulator requires less energy in the

present case, when compared with Table 3-6, oecause it nas

less disturbance to overcome. The LQ controller Figure

3-12) shows the effect of the disturbance oy driving the

state x to a large set-point error ialinough not as larce as

in the case of the constant disturbance%. The disturbance-

utilizing controller achieves large ?csitive values of *T,

*M and SE, showing that the DUC is much more effective

than the LQ regulator, in terms of miss-distance and eneriy

consumption.
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Figure 3-11. Niumerical gain solutions for case of scalar
set-point regulator with an exponentially-
decaying disturbance and disturbance-utilizi.ng
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Figure 3-12. Computed performance of disturbance-utilizing
scalar regulator with non-zero set-point and
exponentially-decaying disturbance; s = 1,
q - o, r - 1, w(t) - -16.1 exp (-0.1 t),
Xsp - -10.0, x(o) 3 30.0, T - 6.0.
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TABLE 3-9. COMPARISON OF PERFORMANCE OF DISTURBANCE-
UTILIZING CONTROLLER AND CONVENTIONAL LQ
CONTROLLER; SCALAR REGULATOR WITH NON-ZERO

SET-POINT AND EXPONENTIALLY DECAYING DIS-

TURBANCE: w(t) = -16.1 e - 0 . 1 t xsP .

-10.0, x(o) = 30.0, s = 1, q - o, r = 1,
T = 6.0

1'" i sp - vr'I) M t l

'" 0. 0 .,.0 2 ,.0 84.2 -0.0') 99., 20.0 83.0

1 0.L 1, 0 1492.0 1,.4 1 . 1 .

J(T) = J + J + J

m q r

2 T 2 T o2= se (T) + I qe (t)dt+ f r u (t) dt

to to

o b
UD~ 0 b (k x + kx c + k Z)
UDAC r (kx + c + z)

u0  = -b (kx x+ kxc c)

LQ r

T 2

EU - f [u ( t )] dt

0

9T JLQ - JDUC x 100%
LQ

s m [xsp - x(T) LQ-ixsp - x(T)IDUC x 100%

ixsp - X(T ) l lQ

- EU LQ - EUDuC
E EU LQ x 100%
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3.4 A Second-Order Plant with Zero Set-Point and an
Exponentially Decaying Vector Disturbance

3.4.1 General Results. In this example, we consider

the system

Xl x 2 + w1 (t) (3.93)

x = u + w 2 (t) (3.94)

y =x x (3.95)

which may be written in vector-matrix format as

A x + B u + F w (3.96)

y= Cx (3.97)

where the disturbance w is assumed to be a two-dimensional

vector whose elements are decaying exponentials of the form

(t) = Cle 1lt  1 (3.98)

w2(t) = C 2e- a2 t = 2 (3.99)
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Following the disturbance-modeling procedures outlined in

Chapter I, we have

1 I Z + oa (t) (3.100)

z 2 = X -2 z2 + a 2(t) (3.101)

w H z 0~j ] (3.102)

z = Dz; D=[l _1 (3.103)

where a, (t) and a2 (t) are sparsely-populated impulse

sequences. The relevant system parameters for this example

are

0=E 0] 1F01 0 1]

The two control objectives for this example are to

achieve simultaneous set-point regulation of tie two stater

Xl(t), x2(t), while efficiently utilizing any available

energy of the disturbances. These objectives will be

achieved by minimizing the performance index
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1 eT (T)Se(T) + [eT(t)Qe(t) + r (u,(t)) 2
- dt(3.104)

t
0

where e(t) x - x(t) Q, S and r for this example aresp

As T- , steady-state values exist for the matrices

Kx(t), Kxz(t) and Kz(t), because the pair [A, B) is

completely controllable and D is the system matrix of the

asymptotically stable system Equation (3.103). Therefore,

the conditions for the existence of solutions of the

algebraic equations involvinq K., Kxz and Kz are auto-

matically satisfied, as was shown in Chapter TI. The three

algebraic (matric) equations to be solved for the case

r- are

1-TT T(-A+BR BTK ) - K A - C QC = 0 (3.105)

(-A +BR- BK) K - KF i - K D - 0 (3.106)
x xz xz

-(K zD + D K)z + K x BR B Kz -( + xF] 0317



Substitution tkr A, 13, etc. in these equatLons leads to

twelve simultaneous aL,ebraic equaitions to be solved. When

these equations are solved, the toilowinq expressions are

obtained for the steady-state gain matrices:

rK 4J (3.108)

r ( 12 a Ir +1) Ia 2 r

2 +-a(r.1)l~g)-(,A r 1+ Lti+r S+ 12 cir + 1

K xz(3.109)

r. ( 2" aT +) r ( 2 a,2 r + 1

(C& r +2 V Or +1) a r+ r+

It is noted that for the special case ti o, - o

Equation (3.109) yields:

li mra0z -2K r" 2]
(3.1101

al 0

a 2 -O
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rhe elements of K, are found to be expressed as follows:

5a 
1

\2 r3/4(ar + 2 r +i

K = _ _ _ _ _ _ _ _(3.111)

((r2  + 2 (a + 1 2

Zl2  z2 1

~r (Li a2  1 1l) + ( + c12)r
% + 1 312

22 2a

r( - c 2r + 1) (2 a 2
2r J tr~+

kz -- 4 2 (3.113)2 .rh + 1

3.4.2 A Numerical Example. Let T - 6.0, C1 - -16.1,

C2 - -16.1, "1 - 0.1 and an a 0.7. The latter values

imply that

D 01 ]0.7 (3.114)

The computed gain matrices Kx(tA, Kxz(t) and Kz(t) for

this example are shown in Figures 3-13 and 3-14. Note that

the elements of each matrix approach steady-state values for

r- in this example. Of particular interest in Figure 3-13
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is the fact that kx~l(T) = 10, which results from the

weighting of 10 on the position state in the terminal

weighting matrix S. The remaining elements of Kx are zero

at t = T, of course, because the remaining elements of S are

zero. The DUC uses both matrices, Kx(t) and Kxz(t),

while the LQ controller uses only the Kx(t) matrix. The

matrix Kz(t) in Figure 3-14 is not required for imple-

menting the DUC control law, but is used in computing burden

and utility for analysis purposes.

The control histories for the DUC and LQ controllers are

shown in Figure 3-15. The DUC accomplishes most of its

control action early in the control interval, while the LO

controller must develop a significant amount of control near

the end. This appears to be due to the fact that the LQ

controller takes cognizance of the disturbance only through

the effects that the disturbance has on the states of the

plant, while the DUC has current information on the

disturbance.

The plant state history (Figure 3-15) shows the action

of the LQ controller in driving xl(T) to a negative value

(-6.6 feet) in response to the negative disturbance; the

DUC, however, drives xl(T) much closer (to within 0.05

feet) to the desired set point in the face of the same

disturbance. The DUC also produces a smaller value of

x2 (T), although no terminal weighting was placed on .2(T).

The utility (Figure 3-15) has a large positive value at

t o, but is quickly driven negative, evidently because of
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kx k x k x k
11 12 X2 1  X2 2

20 4.0 4.0 4.0

16 3.2 3.2 3.2

8 1.6 1.6 1.6 x2

0 0 0 0 11 1
o 1 2 3 4 5 6 t

T

x 1 x 12 x121 x12 2

4.0 2.0 4.0 2.0

3.2 1.6 3.2 1.6

2.4 1.2 2.4 1.2 k 1217k 2

1.6 0.8 1.6 0.8#

0.8 0.4 0.8 0.4k Il k 1
0 0 0 0 _x kx

o 1 2 3 4 5
T

F'igure 3-13. Computed gain matrices Kx(t) and K,,(t)
for a second-order plant with disturbance-
ut ilizing controller; exponentijal ly-
decaying vector disturbance with 1l 0.1
and a 0.7.
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k k k k

Zll z12 z21 z22 k

4.0 1.0 1.0 1.0 kz 1z 2 1

3.2 0.8 0.8 0.8

2.4 0.6 0.6 0.6 k

1.6 0.4 0.4 0.4

0.8 0.2 0.2 0.2 k.

0 0 0 0 t0 1 2 3 4 5 6

T

Figure 3-14. Computed gain matrix Kz(t) for a second-
order plant with disturbance-utilizing con-
troller; exponentially-decaying vector dis-
turbance with a - 0.1 and a2 - 0.7.
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the negative value of x, near t = 1. After x2 becomes

positive at t = 2, the utility becomes positive again, and

remains so until the terminal time at t = 6. It should be

noted that this example is not designed to achieve ultimate

utility, since Q is not zero. The particular Q matrix

chosen in this example encourages the position state xl(t)

to be driven rather quickly to a small value, as Figure 3-15

shows. There is, therefore, a trade-off between keeping

xl(t) small and efficiently utilizing the disturbance in

this example. Even so, a significant amount of positive

utility is "made available" by the disturbance-utilizing

control.

Table 3-10 shows that the DUC is more effective than the

LQ controller on the basis of performance index J, position

(xl) set-point error, velocity (X2 ) set-point error and

control energy consumption. This is reflected in the large

positive values for 'he effectiveness paramrters Wt.

'MI, M2 and E. Relative to the stated control ob-

jectives for this example, the disturbance-utilizing con-

troller achieves a position set-point error of -0.05 feet,

compared with 6.6 feet for the LQ controller and consumes

only 40% as much control enerqy 3s the LQ controller.
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COTO x 1 x 2  PLANT STATES

LOx
202

10 ,, 20 20

P11 2 3 4 5 6Tse

-10 se T 2 2-DUC.~

-20-14040 1 L0

-30- 6 -6 1

Zi Z DISTURBANCE STATES BREASSAC
2 & 2 sec /BREASSAC

0 0. 1 600 600- BURDEN ASSISTANCE

-10 -10 2 40401.9 :W

-20 -20 20z20

41 UTILITY sec

200-

150-

100-

-50 SecT

Fi~gure 3-15. Computed performance of second-order
disturbance-utilizing zero set-point
regulator with asymptotically-decaying
vector disturbance; w1 (t) - -16.1 exp
(-0.1 t), w2(t) -- 16.1 exp (-0.7 t),
xl(o) - 30., T 6.0, r = 1,

10 0 1 0



128

TABLE 3-10. COMPARISON OF PERFORMANCE OF DISTURBANCE-
UTILIZING CONTROLLER AND CONVENTIONAL LQ
CONTROLLER; SECOND-ORDER REGULATOR WITH
ZERO SET-POINT, VECTOR DISTURBANCE WITH
wl(t) =-16.1 exp (-0.1 t), w2 (t) -- 16.1
exp (-0.7 t), xl(o) 30., x2 (o) = 0.,
T = 6.0, r 1,

0 0 0 0

x -()x 1 (T) x _. (TI 

M Q R  J (T) rT SP M Sp EU E
% (FT) % (F/S) %2

0.301 0.301
DUC 0.01 Xl06 174. xio 6  55.1 -0.05 99.2 -10.5 59.5 174. 60.4 

0.670 0.671
LO 216 439. +6.6 -25.9 439.

J(T) = J + JQ + JR

TTT T 2 d

= e (T)Se(T)+ f e (t)Qe(t)dt+ f r [u(t)] dt

0 0

UDUC rB [Kx +xz]

uO 1 BT KxLQ r x

ST iLQ i DUC x 100%
- ~ LQ

m- x 100%

STP

IX 2  - x2 (T) IL_ 1x2  - x2 (T) DUC
eM 2 SSP x 1.00%

2 x2  - x 2 (T)j
-sP

9E EU -- EU.. U x .00lEl) LO



CHAPTER IV

APPLICATION OF DISTURBANCE-UTILIZING

CONTROL THEORY TO SOME MISSILE - INTERCEPT PROBLEMS

4.1 Summary of Chapter IV

This chapter discusses the application of disturbance-

utilizing control theory to missile guidance problems con-

sisting of interception of air defense targets and homing on

ground-based targets, in the face of realistic disturbances.

The air defense problems are studied by using a general

planar model and solving for the optimal (disturbance-

utilizing) control forces along the interceptor missile's

longitudinal and lateral axes. The problems of homing on

ground-based targets are studied via a so-called "small

line-of-sight angle" model and solving for the optimal

(disturbance-utilizing) control forces normal to a reference

line-of-sight line passing through the target position.

In each case the closed-loop performance of the miss le

with disturbance-utilizing control is analyzed in terms of a

performance index J and related key parameters such as term-

inal miss distance, control energy requirements, and fuel

expenditure. In addition, the "effectiveness" of .he

disturbance-utilizing controller is determined, in each

l20

~ mm a~-~ 7
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intercept/homing problem, by comparing its performance with

that of the corresponding conventional linear-quadratic con-

troller, under identical disturbance input conditions.

4.2 A Planar - Motion Missile - Intercept Problem with

Maneuverinq Tarqet and Disturbance-Utilizing Control

4.2.1 Mathematical Model. In this section we will be

concerned with problems of missile-intercept - tasks of

maneuvering the position of an interceptor missile so as to

coincide with the position of an air target - in the face of

disturbance effects which may, or may not, be detrimental to

the intercept objective. The geometry for a planar-motion

version of this problem is shown in Figure 4-1, where the

origin of the coordinate system is located at an arbi-

trarily specified ground point and where, at each time t,

the target position (XTI, XT3) and missile position (XMI,

XM3) are dependent on the initial conditions at time to

and on the respective applied forces, includinq disturbance

forces.

The forces applied to the missiles are assumed to be the

net horizontal and vertical components mu I and mu,, re-

spectively, of the control force (thrust components), and

the net horizontal and vertical components mwml and

mwm2, respectively, of the disturbance forces that may be

acting on the missile. The parameter m is the mass of the

missile; ul and u2 are the horizontal and vertical mis-

sile accelerations, respectively, due to control torce s;
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mu 2  VERTICAL

mWm 2  m l
mrl

INTERCEPTOR m wMISSILE

M twi
TARGE XT3

S-ORIGIN

///XM /////////////// XT1///// 0 HORIZONTAL

Figure 4-1. Geometry of planar-motion missile-intercept
problem.

and wml and Wm2 are the horizontal and vertical missile

accelerations, respectively, due to disturbance forces.

The horizontal acceleration wml(t) of the missile due

to disturbances will be modeled as the superposition of two

terms

Wml(t) = WIND1 + D 1 (4.1)

where WIND1 is the horizontal missile acceleration caused by

wind forces and D1 is the horizontal acceleration caused by

aerodynamic drag forces. Likewise, the vertical acceler-

ation w m2(t) of the missile, due to disturbances, is

modeled as
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Wm2(t) = WIND2 + D 2 + GRAV (4.2)

where WIND2 is the vertical missile acceleration caused by

wind forces, D2 is the vertical acceleration due to aero-

dynamic drag and GRAV is the acceleration of the missile due

to gravity force.

It is assumed that, from the viewpoint of the inter-

ceptor, the motion of the target is "uncontrollable" and is

not known a priori. Thus, the target motion may be viewed

as being caused by the horizontal and vertical target dis-

turbance forces mt wtl(t) and mt wt2(t), respectively.

It is convenient to formulate this intercept problem

using the relative motion model

Xl X 2 (4.3)

X2 u U1 + wl1t) (4.4)

x 3  = X 4  (4.5)

X4 =U 2 + w 2 (t) (4.6)

y = (X1 F x2  x3 P x4)T 4

where x and x3 are the horizontal and vertical posi-

tions, respectively, of the missile relative to the target

and x2 and x4 are the horizontal and vertical time de-

rivatives of :I and x3 , respectively. The corresponding
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mu 2  x 3 RELATIVE POSITION, VERTICAL

mw 2 (t)l

_ =mu I
INTERCEPTOR MwI1 (t)

MISSILE

__ _Xj RELATIVE

TARGET POSITION,
HORIZONTAL

Figure 4-2. Relative motion coordinate system for
planar-motion missile-intercept problem.

relative coordinate system is shown in Figure 4-2, where the

origin is located at the target position.

This choice of relative coordinate system facilitates the

representation of all forces acting on the target and mis-

sile as net forces acting solely on the missile.

The horizontal acceleration of the missile produced by

this net force is

u + w1 (t) (4.8)

where wl(t) is the relative horizontal disturbance-induced

acceleration of the missile with respect to the target, and

is defined by

w1 (t) = Wml (t) - Wt (t) (4.9)
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The vertical acceleration pLoduced by the net force on the

missile is

u 2 + w2 (t) (4.10)

where the disturbance-induced relative vertical acceleration

of the missile with respect to the target is

A.t Wm2 t2 (4.11)

It is assumed that on-line, real-time measurements of

each of the plant states are available from high-quality

track data, so that the output vector y has x1l, x2, x 3,

and x 4 as its four elements.

Equations (4.3) - (4.7) may be written in the compact

form

x A x + B U + F W (4.12)

y - C x (4.13)

where

A 0 0 0 (4.14)
0 0 o

o o



1350i 0
B = (4.15)

U (ul) (4.16)

F - ](4.17)
0w1

w : ) (4.18)

and

F 1 0 (4.17)

0 0

(4.18)
; 2 ]
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It is assumed for this problem that the unknown dis-

turbances wI and w2 can be accurately modeled as

random-like linear combinations of constants and linear

functions of time (ramps) as follows:

wl(t) = C1 + C2 t (4.20)

w2 (t) = C3 + C4t (4.21)

where Cl, C2 , C3 and C4 are unknown "constants"

which may change from time-to-time. Equations (4.20) and

(4.21) may thus represent, at each time t, any possible com-

bination of bias and ramp disturbances in the control inter-

val [to, T .] In accordance with standard DAC protocol, it

is assumed that the jumps in the Ci are not spaced "too

closely" along the time axis.

The dynamic model representing the disturbance process

is constructed by finding a system of differential equations

which wl(t) and w2 (t) satisfy. For the assumed wavefor.

descriptions, Equations (4.20) and (4.21), such a system is

z = Z2 + Ol(t) (4.22)

z 2 = a12 (t) (4.23)

z3 z4 + a21(t) (4.24)

z 4 = 22(t) (4.25)

w =z 1 (4.26)
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w2  2 (4.27)

where the cij(t) represent sparsely-populated impulse

sequences.

Equations (4.22) - (4.27) may be written in compact form

as

z = D z + C(t) (4.28)

w = H z (4.29)

where
0 1 0 01

D 0 0 0 0 , (4.30)

0 o

L 0 0 0 0]
0 0 1 0 (4.31)

and

a (t) = [Oll, 12, 021, 22] (4.32)

It should be noted that there is a distinction between

the assumed disturbance model represented by equations

(4.2G) and (4.29) and the disturbance inputs that will

actually be used in later simulation runs made for this

problem. The actual disturbance inputs in this problem fall

into two categories:
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(a) Inputs with waveform structures that are modeled

exactly by Equations (4.28) and (4.29); for instance: grav-

ity effects (a constant acceleration), and target maneuvers

(a combination of ramps and constant levels of accele-

ration).

(b) Inputs having waveform structures that are modeled

approximately by Equations (4.28) and (4.29); for instance:

acceleration disturbances due to aerodynamic drag on the

missile (a slowly varying nonlinear function of time), and

acceleration due to wind (also a nonlinear function of time,

but often a more rapidly-varying function than drag).

The specific disturbance waveforms used in the simula-

tion studies of particular cases are discussed in Section

4.2.3.

4.2.2 Control Objectives. The planar missile-intercept

problem will be formulated as a zero set-point regulator

problem, where the primary control objective is to regulate

the relative position states xI and x3 close to zero.

The secondary objective is to accomplish the primary ob-

jective in such a way as to utilize any "free" energy which

may be available in disturbances such as winds, aerodynamic

drag, gravity and target maneuvers.

These dual objectives will be met by minimizing the

quadratic performance index
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1 eT (T) Se (T) + 1 TeT~)Q~)+ (t)Ru(t)] dt (4.33)

to

where e o xsp -x =2 -x, for this zero set-point case.

The weighting matrices S, Q, and R used in this problem

are

S1 1 0 0 0

S 0 0 (4.34)

L0 0 0 01

0 0 0 0

Q (4.35)

R [1 0] (4.36)
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where the constant values sll and s 3 3 are specified in

the particular case considered. Recall (Section 2.3) that

it is required, in general, that S and Q be symmetric, non-

negative definite matrices; and it is convenient that

S + Q be positive definite. However, since the plant

Equations (4.3) - (4.6) for this problem are in phase vari-

able canonical form, it is permissible to relax these con-

ditions to allow an S matrix which has zero weighting on the

"velocity" states and allow a zero Q matrix. The control

objectives are achieved by minimizing J with respect to the

control u(t), subject to the plant Equations (4.3) - (4.7)

and the disturbance Equations (4.28) and (4.29).

4.2.3 Discussion of Results. The planar missile-

intercept problem defined in Sections 4.2.1 and 4.2.2 is

solved by applying the theory of Section 2.4, which leads to

the composite state vector

x = (4.37)

the composite system equation

A IFH [B + U+• (4.38)x 0O D + 5] u + I -I
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The corresponding performance index (equivalent to Equation

(4.33)) is then expressed as

J = : x (T)S X (T) + T(t) Q (t)
toI

+ uTt Ru(t)] dt

where S cT S C, C = (-CO] and 0 = CT Q .

The optimal control for the problem at hand is found

from Equation (2.27) to be

u0 = - R-1BT [K x + KXzz] (4.40)

where it is assumed that the plant state x is obtained from

direct measurements of the position and velocity of the

missile relative to the target (as from high-quality radar

tracking measurements, for example), and the disturbance

state z is obtained from an ideal state reconstructor

(estimator).

The assumption of an ideal disturbance state estimator

for this problem may be justified on two grounds:

(a) Estimation of the disturbance state vector z may be

performed with a high degree of accuracy if the estimator is

designed to properly account for the class of disturbance

waveforms to be encountered, assuming measurement noise is

negligible. For a design that meets this criterion, the
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required degree of accuracy is limited primarily by the

number of integrators and amplifiers used in the design,

which can be implemented in large numbers by inexpensive,

compact integrated circuit assemblies.

(b) The purpose of the present work is to investigate

the role of disturbance utilization in missile-intercept

problems. The assumption of ideal disturbance state es-

timates allows the analysis to be clearly focused on the

disturbance-utilization aspects of the problem, as they are

influenced by the waveforms of gravity, and target maneuver,

without regard for effects of sensor imperfections.

The gain matrices Kx(t) and Kxz(t) in Equation (4.40)

are obtained for this problem by solving the matric dif-

ferential equations

Kx = (-A+BR-1 B TKx) T KxKxA-CT QC ; Kx(t)=CTSC (4.41)

Kxz =(-A+BR- 1 Kxz(t)=O (4.42)

Although not required for implementation of the control law

Equation (4.40), the equation for Kz(t)
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K~= (KZD+D TK )+KXTBRZ BI(T K [FH T K+KZTFPH]

(4.43)
Kz(T) = 0

will also be solved to allow computation of the utility

function v/ for analysis purposes. For the simulation

studies of this problem, the matric functions of time

Kx(t), Kxz(t) and Kz(t) are obtained by forward-time

solution of Equations (4.41) - (4.43) on a digital computer

as t progresses from to(=O) to T. For this purpose, a

fourth-order Runge-Kutta integration routine is used on a

CDC-6600 computer (integration of the plant Equation (4.12)

is also performed in this way). Initial conditions for the

forward integrations of Equations (4.41) - (4.43) are ob-

tained by first performing backward-time integrations of

these equations, starting at a specified terminal time T,

with the known terminal conditions, and integrating back to

the starting time to = 0. The element values of the re-

spective gain matrices (Kx, Kxz and Kz), at t n 0,

are then saved, to be used as the initial conditions for the

subsequent forward-time runs. This procedure avoids the

large computer storage requirements that would otherwise be

required to store the time functions Kx(t), Kxz(t) and

Kz(t). A description of the digital program used for

these calculations is contained in Appendix B.
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The disturbance inputs actually used in the simulation

studies of this problem are characterized as follows:

(a) The effect of gravity on the missile is modeled as

a constant "downward" acceleration of the missile.

(b) The effect of drag on the missile is modeled as a

deceleration caused by "base drag", neglecting a',y ad-

ditional drag terms in induced by a non-zero angle of

attack. The drag disturbance deceleration is simulated by

means of the standard expression (directed opposite to

direction of missile velocity Vm)

WD = 1 PVm2 S CD/m (4.44)

where p is the air density, Vm is the total velocity of

the missile

V Jx 2 + x 2

Vm = 24

Sm is the reference area of the missile, m is the mass of

the missile, obtained by a table look-up as a function of

propellant burn-time (Figure 4-3), and CD is the missile

base-drag coefficient, which is obtained by a table look-up

as a function of the missile mach number (Figure 4-4). The

horizontal and vertical components of drag deceleration (D1

and D2, respectively) are obtained by projecting wD along

the appropriate coordinate axis.

(c) The effect of cross winds acting on the missile is

modeled by a disturbance acceleration with the waveform
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Figure 4-3. Missile mass versus burn time.

CD Z6

0.5-

0 MACH
0 1.0 2.0 3.0

Figure 4-4. Missile drag coefficient versus mach number.
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in Figure 4-5, acting in a direction normal to the missile

velocity vector. This waveform is based on realistic aer-

odynamic performance data obtained in response to a wind

force acting on a thrusting missile. Although the point-

mass model used in the problem at hand lacks an explicit

model of angle-of-attack (the angle between the missile

longitudinal axis and its velocity vector is assumed to be

zero), the wind model used in this problem simulates the ef-

fect of a local updraft or downdraft affecting a missile by

causing it to develop a small angle-of-attack, which pro-

duces an aerodynamic force normal to the missile's longi-

tudinal axis, which, in turn, causes an acceleration as

shown in Figure 4-5. This acceleration is applied along a

direction normal to the missile velocity vector. The dura-

tion of the acceleration (modeled as a sine-squared func-

tion with a peak value of 32.2 ft/sec 2 ) is based on the

approximate time for an aerodynamically stable missile

WINDM

32.2-

FT/SEC
2

_0 I I

0 1.0 1.72.0 2.5 3.0

SEC T

Figure 4-5. Representation of effect of wind disturbance on
missile (WINDM).
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(of the class considered in this problem) to regain its

rotational balance tollowing development of a wind-induced

angle-of-attack. The direction of the acceleration WINDM is

such as to move the missile into the wind for the type of

thrusting missile assumed in this problem. The trans-

lational effect of winds occurring during thrusting, as

distinguished from the rotational effect just described, re-

sults in a very small amount of translational motion, and

can be neglected during the short flight times considered

here. It is assumed in this problem that the wind effect is

local to the missile, and does not affect the target.

(d) Intentional target maneuvers are modeled as a dis-

turbance acceleration of the target resulting from aer-

odynamic forces acting in a direction normal to the tar-

get's velocity vector. It is assumed in this problem that

the target develops sufficient thrust to just cancel its

aerodynamic drag, and that the target's lift force is

maintained at a leirei to balance the gravity force on the

target; therefore, the target, in the absence of intentional

maneuvers, would maintain a constant velocity and altitude.

The assumed target acceleration, normal to its velocity

vector, is shown in Figure 4-6. The maximum value of the

latter target maneuver acceleration is 128 ft/sec 2 , and

its direction is represented as an uncertain parameter in

the present study.
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TMAN

128.
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E-4

0
0 1.1 1.6 SEC t

Figure 4-6. Target maneuver acceleration disturbance
(TMAN).

4.2.3.1. Subcase 4.2.1 - Planar-Motion Intercept.

Disturbance Inputs: (a) Gravity (helpful); (b) Aerodynamic

drag (non-helpful). This Sub-case considers the performance

of a missile under disturbance-utilizing control in a planar

intercept problem with the particular missile-target geome-

try of Figure 4-7. This geometry represents the case in

which the missile has been delivered, by a previous mid-

course guidance phase, to the position (-9000 ft ground-

range, +5000 ft altitude), with a horizontal velocity vector

having a magnitude of 2000 ft/sec. The parameter values as-

sumed for this Sub-case are:

(1) Initial target ground-range 0. ft

2 Initial target altitude 4000. ft

:n&tial target velocity* -1000. ft/sec

S :rtzontal, to the left in Figure 4-7
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INITIAL
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VOSI'rION MISSILE TI1AJECIX)HY

t-2.0OS -2

L ~ ~ A tkETR t.0

INITIAL

rT.

NOTE; 1cm - 10,000 WEs for force components,
UL'L U N.

*9000 -8000 -7000 -b000 -5000 -4000 -3000 -2000 -1000 01

G.ROUND- RANGE
FT

Figure 4-7. Missile and target trajectories for Sub-case
4.2.1, showing longitudinal (UL) and normal
(UN) disturbance-utilizing control
components. Disturbance inputs: (a) gravity;
(b) aerodynamic drag.

NOTE: 1 cm -10,000 lbs for force components UL, UN.
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(4) Initial missile ground-range -9000. ft

(5) Initial missile altitude 5000. ft

(6) Initial missile velocity* 2000. ft/sec

(7) Disturbances present: gravity and aerodynamic

missile drag (no target maneuver, no winds). Gravity is

helpful (aids the intercept) and drag is counterproductive

(acts against the intercept).

(8) Terminal state weighting matrix:

S 0 0 0 0

0 0 l100
0 0

(9)

0 0 0 0
Q = 0 0 0 0

(10)

r 0

0 o1

(11) Specified terminal time = 3.0 sec.

*Initially horizontal to the right in Figure 4-7
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The resulting missile and target trajectories are

presented in Figure 4-7. The optimal disturbance utilizing

control forces can be represented by the two components UL

and UN defined as follows:

UL = control force along the longitudinal missile

axis, computed as the projection of the optimal

control forces mu1 and mu2.

UN = control force normal to the longitudinal missile

axis, computed as the projection of the optimal

control forces mul and mu 2.

A plot of UL(t) and UN(t), shown at half-second

intervals, is depicted in Figure 4-7.

The longitudinal (UL), normal (UN), and resultant

U RES  4L 2 + UN2

control forces for Sub-case 4.2.1 are plotted in Figure 4-8.

Note that the primary control requirement is for normal

(pitch-down) force in this case. The control forces in the

relative-state coordinate system are plotted in Figure 4-9,

showing that the primary control force requirement is in the

vertical (downward) direction. The horizontal and vertical

state histories for Sub-case 4.2.1 are shown in Figures 4-10

p
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and 4-11. The disturbance histories for wI and w2 , re-

flecting the contributions of drag and gravity to the hori-

zontal and vertical disturbances, respectively, are shown

in Figure 4-12. Figure 4-13 shows a plot of the utility

function-&, which remains positive for the entire con-

trol interval [0 t < TI. Although drag is acting against

achievement of the intercept, gravity is acting as a help-

ful disturbance during the interval [to , TI, resulting in

a net disturbance effect which is helpful.

The performance Sub-case 4.2.1 is summarized in Table

4-1 where the disturbance-utilizing controller (DUC), using

the control law

u R- BT x + xzZ (4.45)

is compared with the so-called "conventional linear-

quadratic controller," called the "LQ" controller. The

LQ controller uses the familiar control law

u = - RIBT [Kx x] (4.46)

which is the same as Equation (4.45) with Kxz = o. Except

for the difference in control laws, Equations (4.45) and

(4.46), the conditions under which the comparison is made

are identical (i.e., identical disturbance inputs, identical

plants, identical geometry, etc.).
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Figure 4-8. Longitudinal (UL), Normal (UN), and
Resultant (UpEs) of control force for
Sub-case 4.2.1; disturbance-utilizing control.
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-10000-
CONTROL FORCE,

POUNDS
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10000 -20000-

5000 -25000-

0 30000 t
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Figure 4-9. Horizontal (mu1 ) and Vertical (mu2 ) control
forces for Sub-case 4.2.1; disturbance-
utilizing control.
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T

Figure 4-10. Horizontal state histories: xI (relative
position), x2 (relative velocity), for
Sub-case 4.2.1; disturbance-utilizing control.
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ps- X4 (cae 4 1 isturibae-uiloc izg orSub-case 4.2.1, disturbance-utilizing control.
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Figure 4-12. Relative accelerations due to disturbances:
wl (horizontal) and w2 (vertical), for
Sub-case 4.2.1.
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Figure 4-13. Disturbance utility for Sub-case 4.2.1.
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The various performance measures presented in Table 4-1

are defined as follows:

Table 4-1. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER
COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FOR SUB-CASE 4.2.1.

PERFORM- CONTROL CONTROL HORIZ. VERT. MISS
ANCE ENERGY FUEL MISS MISS DISTANCE
INDEX 4X MD 6

J T EU EAU M MD

9 (PT) % (FT) (FT) %

0.435 0.430
DUC X105 9.6 X105 277.0 -1.9 89. 9.5 -72.1 9.7 43.q

LQ 0481 0.466 274.0 -17.3 M 0.13 17.3
X10 5X X0 

l

NOTE: SEE PAGE 157 FOR DEFINITIONS OF
J' 'T' EU, EAU, M, 49MV , MD AND 6 MD'
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1 T 1T T (4.47)J [ x (T) Sx (t) + [x (t)TQx (t) +uT (t) Ru(t]dt 1 7

0

gT -xz JKxz#O x100% (4.48)

KXZ=O

EU TuT (t) u (t) dt (4.49)

t

1 T (uc +I u 2 (t) d)  t
EAU = 1 U (t)) (4.50)

t 0

h - IXl(T)LQI - xl(T)DUCI xl00% (4.51)
Mh 1x(T) LQI

= IX3 (T)LQI - Ix 3 (T)DUCI x100% (4.52)

Mv 'x3 (T)LQI

MD X1(T) + x 3 (T) (.3

(MD)LQ - (MD)DUC X100% (4.54)

-MD (MD) LQ
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The measure EU, computed by Equation (4.49), is proportion-

al to the "control energy" part of the integral term in the

performance index J (Equation 4.47). The measure EAU, com-

puted by Equation (4.50) is of interest to control actuator

designers, since it gives an indication of how much actuator

fuel, or control thruster fuel, is consumed during a missile

flight.

For Sub-case 4.2.1, the DUC controller achieves a smal-

ler performance index J (evidenced by a positive value of

9T) This is the expected result, since the LQ controller

does not have benefit of information about the disturbance

vector z and does not incorporate the time-varying gain

matrix Kxz. The DUC also achieved a substantially smaller

miss distance MD (evidenced by the large positive value of

fMD ) , even though the LQ controller achieved a smaller

vertical miss distance (note the negative value of 97).

The DUC required less control energy EU, but slightly more

control fuel EAU in this flight. Thus, the impressively

smaller miss distance MD was achieved at the expense of a

small additional expenditure of fuel (relative to the LQ

controller) for this sub-case. Heavier weighting on the

matrix S might result in more efficient fuel consumption

for the DUC in this particular sub-case.

The performance cited for Sub-case 4.2.1 is based on the

specified terminal time T = 3.0 seconds. It is of interest

to examine the effects of using other fixed values of T.

Based on an approach suggested by Prof. C. D. Johnson, a
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digital computer program was developed to determine the

value of J for a range of values of T. This program scans

the set of values of J thus obtained, selects the minimum

value Jmin among them, and prints the results of the op-

timal control problem which has the particular terminal time

Tmin which yields Jmin. The program first solves the

matric differential equations for Kx, Kxz and Kz

(Equations 4.41, 4.42 and 4.43) in backward time, starting

at the given terminal conditions. For example, if it is de-

sired to scan over a range of values of T from T = 0 to T =

6 seconds, the matric equations will be solved beginning at

6 seconds, using the given terminal conditions, and inte-

grating until t = 0 is reached. During this backward inte-

gration procedure, intermediate values of the gain matrix

elements are stored at selected intervals. For instance, if

an interval of 1 second is used, then values of each element

are stored at t = 5, 4, 3, 2, 1 and 0 seconds. Figure 4-14

illustrates this procedure for one element (Kx1 1 ) of the

16 element K x array for Sub-case 4.2.1. For this element,

the values KXl (5), K Xl(4), K Xl(3), K Xl(2),

Kx1l(1) and Kxjl(0) are saved during backward inte-

gration of the matric differential equation. Next, the

optimal control problem is solved in forward-time, using

each saved value as an initial condition for a forward-time

integration of the matric differential equations. In the

example being considered, six forward-time optimal control

problems are solved, and J is computed for each problem.
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KX

K
x (3) -

K
x (6)

m t
10 1 324

Figure 4-14. Typical history of Kx

The program selects the minimum (Jmin) of these six values

(if a minimum exists) and identifies the corresponding

terminal time Tmin. As an example, suppose the minimum

value of J is found to be associated with Tmin = 3

seconds; then, the program makes one final "run for the

record", using T = Tmin = 3 seconds and the initial

conditions KX(3), Kxz(3) and Kz(3). (The matrices

Kx and Kxz are required for the control law

implementation; matrix Kz is used in computing the utility
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function, for analysis purposes). For the gain element

KXll, the resulting gain history, generated by this

final forward-time integration appears as shown in Figure

4-15. In addition to providing the detailed data for the

Jmin case, the program also outputs summary parameters

2 2
such as J, terminal-time miss distance MD = x I(T) + x 3 (T)

113

K x

I.C. SAVED AT
t=3 IN BACKWARD RUN--

END VALUE
SAME AS SPECIFIED -

TERMINAL VALUE
I = t

6 ~T3
MIN

Figure 4 15. Forward-time history of Kxl I for Tmin=.
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EU and EAU for each value of T in the range scanned. Values

of these parameters for various values of T, for the problem

conditions of Sub-case 4.2.1, are presented in Figures 4-16

through 4-19 for the disturbance-utilizing controller, and

the conventional LQ controller. The minimum value of J is

reached at T = 3.0 seconds for both controllers (see Figure

4-16). The total effectiveness ST versus T is plotted

over the range of T from 1.5 to 5.0 seconds (Figure 4-20),

remaining positive for the whole interval. This shows that

the disturbance-utilizing controller consistently obtains a

lower performance index than the LQ controller.

J

PERFORMANCE

10 81 INDEX

4-

2- SOLID CURVE=DUC
7 DASHED CURVE=LQ

10 8
4-

2

10
6

4-

2-

105 1 i-

4-

2-

10 - , T
0 1 2 3 4 5

SEC

Figure 4-16. Performance index J versus terminal time T,
Sub-case 4.2.1; DUC and LQ.
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2-
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4-

2-
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Figure 4-17. Radial miss distance at t = T versus terminal
time T, Sub-case 4.2.1; DUC and Lr.

EU

8 i CONTROL ENERGY
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5-10 , , ,
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2-

10 T
0 1 2 3 4 5
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Figure 4-18. Control energy measure EU versus terminal time
T, Sub-case 4.2.1; DUC and LQ.
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Figure 4-19. Control fuel measure EAU versus terminal time
T, Sub-case 4.2.1; DUC and LQ.
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Figure 4-20. Total effectiveness PT versus specified
terminal time T for Sub-case 4.2.1.
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4.2.3.2 Sub-case 4.2.2 Planar - Motion Intercept

with Disturbances Inputs:

a) Gravity (helpful)

b) Aerodynamic drag (non-helpful)

c) Winds (non-heleful in vertical direction;
helpful in horizontal direction) on the
missile

d) Target maneuver (non-helpful)

This case considers the effects of winds and target man-

euvers on the performance of a missile with disturbance-

utilizing control. All conditions and parameters in this

case are identical with those of Sub-case 4.2.1, except that

two additional disturbance inputs are present in sub-case

4.2.2: namely, winds and target maneuvers. The wind input

disturbance is defined by Figure 4-5, and acts on the mis-

sile as a normal force (m)(WINDM), where m is the missile

mass and WINDM is the normal acceleration of the missile due

to wind. It is assumed in Sub-case 4.2.2 that the wind

force (m)(WINDM), or its horizontal and vertical components

(m)(WINDl) and (m)(WIND2), are acting on the missile as

shown in Figure 4-21. Thus, for the geometry of Sub-case

4.2.2, the horizontal component of wind force is helpful in

driving tte missile toward the intercept, but the vertical

component of wind force is non-helpful, since it acts to

hinder the intercept.

The target maneuver in Sub-case 4.2.2 has the waveform

described in Figure 4-6, with a peak acceleration value of

128. ft/sec 2 (4g), and acting in a direction to drive the

.... . ... o . . ... ii.lll i ' .. 4
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VE ,TICAL

(m)(WIN2 m) (WINDM)

(m) (WINDI)

no HORIZONTAL

Figure 4-21. Normal wind force (m)(WINDM) and its
horizontal and vertical components (m)(WINDl),
(m)(WIND2), respectively, for Sub-case 4.2.2.

target downward---i.e., away from intercept. Thus a

non-helpful target maneuver is assumed.

The closed-loop disturbances-utilizing control was

derived as in previous cases, and the resulting missile and

target trajectories are shown in Figure 4-22. The

longitudinal and normal components of the disturbance-

utilizing control force are also shown in Figure 4-22 at

selected moments of time. Note the downward deflection of

the target trajectory due to the assumed target acceleration

maneuver. Although the target applies a significant

magnitude of maneuver acceleration (4q), it is applied about

half-way into the flight and the target trajectory does not

have time to deviate very far before intercept occurs. The

effect of the target maneuver "disturbance" on the compo-

nents UL and UN of the disturbance-utilizing control

force can be seen at t - 1.5 in Figure 4-22, where, for
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instance, both control components become larger for a short

time to accommodate the detrimental effects of the target

maneuver "disturbance".

The time-histories of the disturbance-utilizing control

forces for Sub-case 4.2.2 (Figures 4-23 and 4-24) clearly

show how the additional disturbance effects due to target

maneuvers and winds are taken into account by the

disturbance-utilizing controller. Note, for example, the

abrupt changes in the control forces over the sub-interval

[t - 1.1 to 1.6 sec] due to the onset of target maneuvers.

The effect of the wind on the control forces can likewise be

seen during the sub-interval [t = 1.7 to 2.5 sec).

The time-histories of the relative state variables

(Figures 4-25 and 4-26) are almost identical with the cor-

responding time-histories for sub-case 4.2.1 (Figures 4-10

and 4-I1), which indicates that the disturbance-utilizing

controller is doing an effective job of "accommodating" the

additional disturbance inputs due to target maneuvers and

winds.

The relative accelerations between missile and target,

due to disturbances, are shown in terms of horizontal (wI )

and vertical (w2 ) components in Figure 4-27. Those graphs

show the rather dramatic changes in relative accelerations

due to the presence of additional disturbance inputs for

this sub-case.

The effects on performance caused by the additional dis-

turbances can also be seen in the time-history of utility
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Figure 4-23. Longitudinal (UL), Normal (UN), and
Resultant (UREs) of control force for
Sub-case 4.2.2; disturbance-utilizing
control.
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Figure 4-24. Horizontal (mul) and Vertical (mu2)
control forces for Sub-case 4.2.2;
disturbance-utilizing control.
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Figure 4-25. Horizontal state histories: xi (relative
position), x2 (relative velocity), for
Sub-case 4.2.2; disturbance-utilizing control.
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Figure 4-26. Vertical state histories: x3 (rolative
position), x4 (relative velocity), for
Sub-case 4.2.2; disturbance-utilizing control.
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Figure 4-27. Relative accelerations due to disturbances:
w I (horizontal) and w2 (vertical), for
Sub-case 4.2.2.
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(Figure 4-28) which is suddenly driven to a large negative

value by the target maneuver input, beginning at 1.1 sec-

onds. Thus, this sub-case is seen to have a considerably

less favorable utility history than was true for sub-case

4.2.1.

The performance summary for Sub-case 4.2.2 is presented

in Table 4-2. The disturbance-utilizing controller for this

case obtains a larger J than for Sub-case 4.2.1, reflecting

primarily the increased control energy (as measured by EU)

required to accommodate the intensified disturbance environ-

ment. It is interesting to note from Table 4-2 that,

although the disturbance-utilizing controller achieves both

a lower J and a lower terminal miss-distance than the con-

ventional LQ controller, it did not in this case use less

control energy as measured by EU. This is not a surprising

occurrence, since the structure of the performance index J,

Equation (4.39), leads to an optimal solution which seeks a

weighted balance between the values of the terminal state

term and the value of the integral portion of J. In Sub-

case 4.2.2, the terminal miss-distance performance of the

DUC was achieved at the expense of consuming a small amount

of additional control energy. However, the DUC consumes

less fuel than the LQ controller, for this sub-case as shown

by the values of EAU in Table 4-2. Note that the

disturbance-utilizing controller has positive total effec-

tiveness cT - 11.2%, for the selected terminal time of

T = 3.0 sec. The variation of ?T versus various specified
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Figure 4 -28. Disturbance utility for Sub-case 4.2.2.
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Table 4-2. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER
COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FOR SUB-CASE 4.2.2.

11I"REORM-

ANC' (ONTR'OL, CONTOIL HOR I Z. VERI'. MISS

INDEX ENERGY FUEl, MISS MISS DISTANCE

x(T) 'M x M MD 'M
xI() x3 (T) MvD"T EU [EALU M If 3 V MD

.. (FT) % (FT) % (FT)

DUC 0.734 11.2 0.727 371.0 -3.9 82.2 10.5 79.0 11.2 79.5
xlo 5  XIO 5

LQ 027068 387.0 - 21.9 50.0 54.6
X15 x15 x

NOTE: SEE PAGE 157 FOR DEFINITIONS OF

J 'T' EU, EALJ, M , , MD AND MDmv MD'
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terminal times is shown in Figure 4-29. Note that Rt re-

mains positive up to about 4.7 seconds. The effectiveness

would be expected to be always non-negative (that is, the

disturbance-utilizing controller would be expected to be at

least as good as the conventional linear-quadratic control-

ler in handling an identical disturbance input, but, the

numerical results of Figure 4-29 indicate that this con-

dition was not achieved beyond t - 4.7 seconds for the cal-

culations performed on Sub-case 4.2.2. The reason(s) for

this discrepancy is not known, but the following two pos-

sible sources of error are proposed as contributing factors:

(I) Disturbance waveforms consisting of linear

ramps and constant level segments (as assumed in the dis-

turbance model, Equation (4.28) - (4.32)) only afford an

approximation to the wind and drag disturbances actually

used as inputs in the computer simulation runs of this pro-

blem. The non-ideal results in the values of eT above t =

4.7 may reflect the error involved in this approximation

since 'T is a function of the difference between two large

but nearly equal, values of J in this region. A solution to

this problem, of course, is to model the disturbance more

realistically, possibly increasing the order of the distur-

bance model, Equations (4.28) - (4.32). On the other hand,

the level of the existing approximation error may well be

adequate for most practical intercept applications.
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Figure 4-29. Total effectiveness e'T versus specified
terminal time T for Sub-case 4.2.2.
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(2) The method of obtaining "initial conditions"

for the forward-time computation of the gain matrices Kx

and Kxz, as used in this study, may introduce computa-

tional errors in cases with large values of T. That is,

since some elements of the matrices are very "flat" as

backward-time approaches t = o, the backward-time integra-

tion process may produce neighboring solutions having nearly

identical values near t = o. Figure 4-30 illustrates this

phenomenon for a typical element of the matrix Kx, where

several gain-histories have nearly the same initial con-

ditions at t = o. In fact, due to the resolution limitation

imposed by the digital word size, there always exists some

"large" value of T such that two neighboring Kx(t) gain-

histories will have values so close together (near t = o)

that their numerical values are represented by the same

digital word. When this happens, it becomes impossible to

generate unique forward-time gain-histories for two neigh-

boring backward-time solutions. One way to circumvent this

problem is to provide double-precision computations for this

portion of the program.

4.2.3.3 Sub-case 4.2.3 - Planar - Motion Intercept.

All Conditions as in Sub-case 4.2.2, Except for Increased

Terminal State Weighting. It is interesting to consider the

effects of the terminal state weighting matrix S on the per-

formance of a missile with disturbance-utilizing control.

The sub-case considered in this section uses the S-matrix
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That is, the weighting of the relative position states x1

and x3 is increased by a factor of 10 over that used in

Sub-case 4.2.2; all other parameters are identical with

those of Sub-case 4.2.2.

The missile performance summary for sub-case 4.2.3. is

presented in Table 4-3, and shows that the increased weight-

ing on terminal miss-distance provides a sharp reduction in

both xl(T) and x3 (T), as well as total miss-distance,

for both the disturbance-utilizing controller and the con-

ventional linear-quadratic controller (compare with Table

4-2). These reductions were obtained at the expense of

slightly larger total values of J. Note that, for Sub-case

4.2.3, the disturbance-utilizing controller achieves much

lower terminal miss-distance and also uses less control

energy and less control fuel than the conventional LQ

controller. The disturbance-utilizing controller for this

case achieves significant total effectiveness value 4T =

20.2%. Figure 4-31 shows the total effectiveness erT

versus terminal time T for Sub-case 4.2.3, which indicates

that the disturbance-utilizing controller consistently

obtains a lower value of J for various values of T.

*This means that JDUC is 79.8% of JLQ.
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TABLE 4-3. PERFORMANCE OF DISTURBANCE-UTILIZING
CONTROLLER COMPARED WITH CONVENTIONAL LINEAR-

QUADRATIC CONTROLLER FOR SUB-CASE 4.2.3.

PERFORM- CONTROL CONTROL 1ORIZ. VERT. MISS
ANCE ENFRGY FUET. M I SS miS ) STANCE
INDEX

I T U EAU I(T) r x2 (T) Mv MD MD
(FT) 11  (FT) (FT) %

0.743 0,42
Kle 1 20.2 5- 376.0 -0.6 90.2 0.9 92.4 1.1 91.7[t X105 X10

0.930 M 0.842
Q X05 X105 443.0 -6.1 11.8 13.3

NOTE: SrE PAGE 157 FOR DEFINITIONS OF
S'" EU, EAU), 'M I , MD and , I

T TOTAL JLQ -JDUC
EFFECTIVENESS LQ C 100%20 JLQ

15

10"

5"

0 3 4 T

SEC

Figure 4-31. Total effectiveness IT versus specified
terminal time T for Sub-case 4.2.3.
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4.2.3.4 Sub-case 4.2.4 - Planar - Motion Inter-

cept; Ground-Launched Missile. Disturbance Inputs:

a) Gravity (non-helpful)

b) Aerodynamic drag (non-helpful)

c) Winds (non-helpful in horizontal direction,
helpful in vertical direction.)

d) Target maneuver (non-helpful)

In this section we consider the performance of a missile

with disturbance-utilizing control in a ground-launch

problem with difficult missile-target geometry and highly

detrimental disturbance inputs. The geometry of the case to

be considered is shown in Figure 4-32. The parameter values

peculiar to Sub-case 4.2.4 are:

a) Initial target ground-range 0. ft

b) Initial target altitude 6000. ft

c) Initial target velocity -1000. ft/sec
(horizontal, to the left
in Figure 4-32)

d) Initial missile ground-range -7000. ft

e) Initial missile altitude 0. ft

f) Initial missile velocity 0. ft/sec

q) Disturbances present: gravity
(non-helpful), aerodynamic drag
(non-helpful), wind force on missile
(large non-helpful component in hori-
zontal direction; small helpful compo-
nent in vertical direction), target
maneuver (4 g's, evasive - non-helpful).

h) Terminal state weighting matrix S is as

follows:
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ALTITUDE FT

8000

/TRAJECTORY TARGET .7000

MISSILE
TRAJECTORY .5000

t-4.0 14000

-3000

-2000

IN IT IAL t-. 1000
MISS ILE
POSITION t-o

-60 100 1 -4000 -2000 0 GROUND RANGE
-7000 -5000 -3000 -1000 FT

Figure 4-32. Missile and target trajectories for

Sub-case 4.2.4; disturbance-utilizing
control. Disturbance inputs:

a) Gravity

b) Aerodynamic drag

c) wind on missile

d) Target maneuver

-.|
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0 0 0 0(4.56)

i) QO - [0] (4.57)

k Specified terminal time T = 6.0 sec.

The wind disturbance force for Sub-case 4.2.4 is ori-

ented as shown in Figure 4-33. The missile trajectory for

this case is nearly vertical (about 80 degrees), and, there-

fore, the horizontal (non-helpful) wind force component

(m)(WINDI) is much larger than the vertical (helpful) com-

ponent (m)(WIND2). The waveform of the wind-induced ac-

celeration normal to the missile (WINDM) is defined by

Figure 4.5. The target acceleration for Sub-case 4.1.4 is de-

scribed by Figure 4-6, and is a 128. ft/sec2 (4g) evasive

maneuver which drives the target upward - away from

intercept

The optimal disturbance-utilizing control for this sub-

case was computed as in the previous intercepts, and the re-

sulting missile and target trajectories are shown in Figure

4-32.

The time-histories of the control force components for

sub-case 4.2.4 (Figures 4-34 and 4-35) reflect the effects

of winds (between t a 1.7 and t = 2.5) and target maneuvers

(beginning at t - 1.1).
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VERTICAL

(m) (WINDM) (m) (WIND2)

() (WINDI) 
HORIZONTAL

Figure 4-33. Normal wind force (m)(WINDM) and horizontal
and vertical components (m)WINDI, (m)(WIND2),
respectively, for Sub-case 4.2.4.

UL UN URES

100000 100000 100000
CONTROL FORCE

POUNDS
8GO00 80000 80000

60000 60000 60000 SOLID CURVE, UL

40000 40000 40000 ,DASHED CURVE,

20000 20000 20000

t
0 1.0 2.0 3.0 4.0 5.0 6.0

.__ N SEC T l

-20000 
U N S

-40000

Figure 4-34. Longitudinal (UL), Normal (UN), and
Resultant (URES ) control forces for

Sub-case 4.2.4; disturbance-utilizing control.
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mu1  mu2

100000 100000

80000 80000 __mu2

60000 60000

40000 40000

20000 20000 mut

0 0 t
0 1.0 2.0 3.0 4.0 5.0 6.0

SEC T

-20000

Figure 4-35. Horizontal (mu1 ) and vertical (mu2)
control forces for Sub-case 4.2.4;
disturbance-utilizing control.

The time-histories of the missile target states for

Sub-case 4.2.4 are shown in Figures 4-36 and 4-37. The ef-

fects of the wind disturbance are seen in the horizontal

position and velocity states in the interval [t = 1.7,

t - 2.51. The effect of the target's evasive maneuver, and

the cumulative effect of drag on the missile, result in a

slight decrease in relative vertical velocity x4 near the

final time (see Figure 4-37).
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xI x

0 5000

ft ft/sec
-2000 4000-

-4000 30001

-6000 2000"/ x2

-8000 1000 "

-10000 0 i i Ot

0 2.0 Sec 4.0 6.0

Figure 4-36. Horizontal state histories: xl (relative
position), x2 (relative velocity), Sub-case
4.2.4; disturbance-utilizing control.

x3  x43 4
0

-1000 x3

-2000 2000

x 4

-3000

-4000 1000

-5000

-6000 0 t

0 2.0 4.0 6.0

Figure 4-37. Vertical state histories: x3 (relative
position), x4 (relative velocity), for
Sub-case 4.2.4; disturbance-utilizing control.
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The net disturbance effects are seen in the plots of

wI and w2 in Figure 4-38, which reflect the combined ef-

fects of gravity, drag, winds, and target maneuvers.

The effect of wI and w2 on utility is seen in Figure

4-39. Note that - is negative for thc total flight, showing

the effect of the highly detrimental disturbance environment

of Sub-case 4.2.4.

The performance of the missile with disturbance-

utilizing controller for Sub-case 4.2.4 is summarized in

Table 4-4. Note that the disturbance-utilizing controller

achieves positive total effectiveness 6T even though the

utility-& is always negative for this case. This result de-

monstrates applications of disturbance-utilizing control are

not limited to those cases in which the disturbances have

positive utility *. The disturbance-utilizing controller

for this case produces significantly better performance than

the LQ controller, in terms of terminal miss-distance,

control energy requirements, and control fuel consumption,

even though the available "utility of disturbances" P/ is

never positive.

4.3 A Planar - Motion Homing Intercept Prcblem with
Fixed Target and Disturbance-Utilizing Control

4.3.1 Mathematical model. In this section we

consider a homing intercept problem in which a missile is

to be controlled during the final phase of its flight so

that its position coincides with that of a fixed target at
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w w

0 0.- - SC 4Q PN t

(ft/sec2 ) (ft/sec

-50 -5o- w1

-100 -100--

-200 i

-250

Figure 4-38. Relative accelerations due to disturbances:

wj (horizontal) and w2 (vertical), for
Sub-case 4.2.4.

IT
kb3 ! 0 0 2.0 SEC 4.0 6.0

-200--

-400

-600

-1000

Figure 4-39. Disturbance utility for Sub-case 4.2.4.
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TABLE 4-4. PER.FORMANCE OF DISTURBANCE-UTILIZING CONTROLLER

COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC

CONTROLLER FOR SUB-CASE 4.2.4.

IUI(M 'N I I, lh I l V1111' . MI V;,;

N,'IKNI P ITI. M I .; MISS D I srANC."

SNDI' VX

.TF I M 1 Mr'

0. ,1 - I.0.7 ) ,.8TI V ,

Pt C o" , II 10 9.1.i 0 .' 3.I )(. q .9 of.814 96. b
XIO

t  
XI

. , .,,,, 14 1; .0 0 -2. . 8 24. 1
X__ Xlxo t

NovIl : : Al' l' P- ' VO; I" N T IIINI'IION:;

a specified terminal time, even in the face of disturb-

ances which may, or may not, be detrimental to the control

objective. The planar geometry for this problem is shown in

Figure 4-40, where the origin is located at the fixed ground

target position and the position of the missile is defined

by the coordinates (XM, YM), where XM is horizontal

and Yin is vertical, relative to the ground.

It is convenient to consider a reference line-of-sight

(REF LOS) passing through the target and oriented at a known

angle ah relative to the horizontal line XM. The REF

LOS is established a priori, and may correspond to a desired

orientation of the line-of-sight. A coordinate xl is es-

tablished normal to the REF LOS (Figure 4-40) and it is as-

sumed that the missile begins the homing phase of the

problem with a certain displacement xl(o) and velocity



191

YM
mow(t)

mu 1

MISSILE

h TARGET '

Figure 4-:d. Coordinate system for small line-of-sight

angle homing intercept model.

x2(o) (where x2 = xi) normal to the REF LOS. It is

assumed that a previous "midcourse" guidance phase has de-

livered the missile to the beginning of t-he homing phase at

t - to; thus, non-zero values of xl(o) and x2 (o) char-

acterize the extent to which the midcourse phase has failed

to enable the missile to start the homing phase under ideal

conditions. The initial range to the target and the closing

velocity are assumed given. The following assumptions are

made in connection with this problem:

(a) The displacement xl (t) of the missile at any

time te[t O , TI during the homing problem is small (and

hence the line-of-sight angle \ (Figure 4-40) is small), so

that the forces normal to the LOS may be considered to be

approximately normal to the REF LOS.
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(b) The missile is controlled by a force mu (m is

the mass of the missile and u is the acceleration associated

with the control force) which may be considered to be normal

to the REF LOS. This type of control may, for example, be

associated with

(1) A missile with "side-thrusters," oriented

so that the missile's longitudinal axis is approximately

along the REF LOS: or

(2) An aerodynamically controlled missile

(e.g., a missile controlled by the deflection of tail fins)

whose longitudinal axis lies approximately along the REF

LOS.

(c) The component of closing velocity (between

missile and target) along the REF LOS can be considered to

be constant during the homing problem.

(d) The disturbance forces of primary interest are

those which are normal to the REF LOS, represented by mw(t)

in Figure 4-40, where w(t) is the acceleration normal to the

REF LOS resulting from disturbance forces.

Since the initial relative range and the closing veloc-

ity (constant) is given in this problem, the time tz at

which the relative range along the REF LOS will become zero

is known a priori. This value tz is used as the speci-

fied terminal time T at which xl is to be driven to zero

along the coordinate normal to the REF LOS. In missile

applications, T is typically obtained from radar or

range-finder data in the form of time-to-go (tgo = T - t).
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Any error in the measurement (or estimate) of tgo will

result in a non-zero miss distance along the REF LOS.

Errors in the knowledge of T are not considered in the pres-

ent work, but have been investigated by several authors

(211, (22] in relation to homing intercept problems, and

current research is underway at the U. S. Army Missile

Command to find improved methods for estimating tgo.

Assumptions (a) through (c) and the associated geometry

of Figure 4-40 define a "small LOS angle" missile homing

model like that which has been used by a number of workers

[231 - [341 in applications including intercept and rendez-

vous (where displacement and velocity normal to the REF LOS

are driven to small values as t -, T). However, the "small

LOS angle" model is used in the present work in a unique way

- disturbances normal to the REF LOS (note assumption (d))

are utilized in an optimal manner. Former approaches either

ignored these disturbances, or modeled them as gaussian

noise and used stochastic control approaches to cope with

them. The application of the "small LOS angle" model to the

missile homing problem where disturbances are present

results in a particularly straight-forward imple-

mentation of the linear-quadratic disturbance-utilizing

control theory.

The equations describing the motion of the missile

normal to the REF LOS are

x 1 = x 2 (4.59)
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2 = u + w(t) (4.60)

]T[xl1 XT (4.61)

where the output vector Y has xl and x2 as its elements

- it is assumed that high-quality measurements of xI and

x2 are available from tracking data. These equations may

be written in the form

x = Ax + B u + F w (4.62)

Y - C x (4.63)

where

A[ 0] (4.64)

B (= (4.65)

F= (0) (4.66)

and

C- M ' 0 (4.67)

It is assumed that the disturbance w(t) is a slowly-

varying function of time which may be closely approximated

by linear combinations of constant levels and linear ramps:

w(t) - C1 + C2 t (4.68)
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where C1 and C 2 are unknown constants. The disturbance

process is written in state-variable form as

z I1 = w (4.69)

z = z2 + o(t) (4.70)

z = 0 + a2 (t) (4.71)

or in the form

z = D z + a(t) (4.72)

w =H z (4.73)

where

D [0 1(4.74)

H =[1 0] (4.75)

and alt) - 0ai , 021 is a sparse vector-impulse sequence

occurring at unknown instants.

The sources of disturbances considered in this problem

are gravity and winds (when present). The gravity component

acting normal to the REF LOS is

"- . . .. " 'lil [ ........ . i ii| .rll u i -" .. . " --i I
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- 32.2 cos a h

and a nominal value of a h 30 degrees is assumed. Thus

the acceleration disturbance normal to the REF LOS due to

gravity is as shown in Figure 4-41.

ACCELERATION
NORMAL TO
REFERENCE
LOS DUE TO
GRAVITY

T
0 -t

-27.89

FT/SEC
2

Figure 4-41. Gravity disturbance for homing intercept
problem.

The acceleration disturbance due to wind in this problem

is modeled by the acceleration waveform of Figure 4-5. The

specific orientation of the assumed wind disturbance rela-

tive to the REF LOS will be discussed for the specific cases

where wind disturbances are present.
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4.3.2 Control Objective. The primary control objective

for the class of problems considered in this section is to

drive the displacement of the missile (normal to the REF

LOS) to zero at a specified terminal time T; that is, to re-

gulate the state xl to zero at t - T. The secondary ob-

jective is to achieve the primary objective while effect-

ively utilizing the "free" energy of the disturbance w(t).

A special case is also considered (Section 4.3.3.3) where an

additional objective is to achieve a specified missile tra-

jectory approach angle at t - T, while achieving the primary

and secondary objectives.

The control objectives are to be achieved by minimizing

the quadratic performance index

T
e1 T)eT 1 freTu 2

J e(T)Se(T)+ [eT(t)Qe(t)+ ru(t]dt (4.76)

t
0

where e- xp - - x, subject to the plant equa-

tions (4-62) and (4-63) and the disturbance process equa-

tions (4-72) and (4-73). The terminal state weighting

matrix S and the matrix Q will be numerically specified when
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they are used in the specific cases. The control weighting

coefficient r is set to I for all cases to be discussed

here.

4.3.3 Discussion of Results. The homing intercept

problem is solved by applying the theory of Section 2.4,

which leads to the composite state vector Equation (4.37),

the composite system Equation (4.38) and the performance

index Equation (4.39). The optimal control is computed by

Equation (4.40) after computing the time-varying gains

Kx(t) and Kxz(t) as the solutions of Equations (4.41)

and (4.42.). The time-varying gain Kz(t) is also computed

(by solving Equation (4.43)) for use in computing the dis-

turbance utilityfifor analysis purposes. The problem is

solved on a CDC-6600 computer as described for the missile

intercept problem in Section 4.2.3, using backward-time

integration to find the initial conditions for Kx, Kxz

and Kz.

The plant state x for the optimal control Equation

(4.40) is assumed to be available from position and velocity

data (as from high-quality radar tracking measurements, for

example). The disturbance state vector z is assumed to be

obtained from an ideal state reconstructor (estimator) for

this problem; the grounds for making this assumption were

discussed in Section 4.2.3 in connection with the problem of

Section 4.2, and they also apply to the homing intercept

problem of the present section.
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4.3.3.1 uu-case 4.3.1 - Planar Hominq Intercept.

Disturbance Input: Gravity (helpful). In this sub-case we

consider the performance of a missile with disturbance-

utilizing control in a planar homing intercept having the

missile-target geometry as shown in Figure 4-42. The para-

meter values for Case 4.3.1 are:

a) Fixed target at 0. ft down-range, 0. ft
altitude.

b) Initial missile ground-range -6778. ft

c) Initial missile altitude 4260. ft

d) Initial missile offset normal

to REF LOS, xl(o) 300. ft

e) Initial missile range along
REF LOS -8000. ft

f) Initial missile velocity normal
to REF LOS, X2 (o) 0. ft/sec

g) Missile velocity along REF LOS
(constant, toward target) -2000. ft/sec

h) Angle of REF LOS from horizontal 30. deg

i) Specified terminal time T 4.0 see

j) Disturbance: gravity, helpful

k) Control weighting parameter 1.0

m) Q.[ 0]
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This homing-intercept problem was solved on the CDC 6600

computer, and the resulting optimally controlled missile

trajectory for Sub-case 4.3.1 is shown in Figure 4-42, with

the associated disturbance-utilizing control force mu0

displayed at 1 second intervals. The optimal control u°

is computed by Equation (4.40) as a function of the time-

varying gain matrices Kx and Kxz. The time-varying mis-

sile mass m varies as shown in Figure 4-3. The missile is

able to apply the control force in a direction approximately

normal to the missile trajectory (assuming small angle of

attack) rather than normal to the REF LOS as desired. The

missile trajectory angle relative to the horizontal goes

from 30 degrees at t = o to 34 degrees at t = 4.0. There-

fore, the maximum error in the angle of application of the

control force is 4 degrees, which results in the application

of 99.8% of the control force mu0 normal to the REF LOS.

The time-history of the control force requirement is shown

in Figure 4-43, which is seen to be nearly a linear function

of time.

The time-histories of the states xl and x2 are shown

in Figure 4-44. Note that, since no penalty has been placed

on x2 (T), it has a relatively large value of -140 ft/sec,

corresponding to the missile trajectory angle which is about

4 degrees greater than the 30 degree angle of the REF LOS.

The disturbance for this case (Figure 4-45) is the projec-

tion of gravity normal to the REF LOS. The utility (Figure
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4-46) is non-negative for the whole flight, as the result of

the helpful action of the disturbance in this sub-case.

The performance of the missile with disturbance-

utilizing control for this case is compared with that of the

conventional linear-quadratic controller in Table 4-5, show-

ing superior performance for the disturbance-utilizing con-

troller in terms of J, S T , EU, EAU, xl(T) and (MD,

where
T

1 eT(T)Se(T)+ f (t)e(t)r u2(t dt (4.77)

t0

mu0 sec T

1 2 3 4

t)t

0

z

04 -400-

W

C) -800-

g-1200-

0

U_1 6 0 0

Figure 4-43. Disturbance-utilizing control force for
Sub-case 4.3.1.
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Figure 4-44. State histories: xl and x-- for 3ub-case
4.3.1 with disturbance-utilizinq control.
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Figure 4-45. Disturbance acceleration w, for Sub-case
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Figure 4-46. Disturbance utility for Sub-case 4.3.1.

TABLE 4-5. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER
COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FOR SUB-CASE 4.3.1.

MISS-
PERFORM- DISTANCE
ANCE CONTROL CONTROL NORMAL
INDEX 'T ENERGY FUEL TO REF LOS X MD

EU EAU X 1 (T)

(FT)

DUC 138.0 94.9 137.0 29.0 0.4 96.6

1.0 2722.0 2047.0 113.0 -11.6

NOTE: SEE PAGES 202 AND 205 FOR DEFINITIONS
OF J, T , EU, EAU AND I'MD.
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TLQ -DUC X100% (4.78)

LQ

EU f u. f 2 (t) dt (4.79)

t0

EAU f u (t) Idt (4.80)

t
0

1FMD - j x (T) ILQ x 1(T)I DUC x100% (4.81)IX(T)IL
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All effectiveness measures show a sizeable margin at T -

4.0. Values of total effectiveness ,T versus terminal

time values are plotted in Figure 4-47, which indicates a

continuing increase in (T as T increases.

4.3.3.2 Sub-case 4.3.2 - Planar Homing Intercept.

Disturbance Input: Gravity (non-helpful). Sub-case 4.3.2,

considered in this section, examines the performance of a

missile with disturbance-utilizing control in a planar

homing intercept configuration where the missile-target

geometry (Figure 4-48) is such that gravity is a non-helpful

disturbance, and the missile's offset from the REF LOS at t

- o, xl(o), is twice what it was in Case 4.3.1. The

parameters for Case 4.3.2 are as follows:

TOTAL J - JDU_
1 T EFFECTIVENESS = X 100%

~~ 100 ~LQ x10

80

60

40

20

0, T
0 1 2 3 4 5 6

SEC

Figure 4-47. Total effectiveness R versus specified
terminal time T for Sub-case 4.3.1.
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NYM 
ALTITUDE

FT
4000

t-00

3000

mu0

2000
MISSILE

TRAJECTORY

Figure 4 - 48. Missile trajectory for Sub-case 4.3.2,

showing control force mu°0; distrbnce- u 1000utilizing control. Disturbance present: g t
gravity. ud

8000 70'00 -60bo -5060 -4do0 -3doo -20bo_ __I b ITA T

GROUND RANGE
FT

NOTE:- muo ucale is 2 cm - 10000#./

Figure 4-48. Missile trajectory for Sub-case 4.3.2, showing
control force Muo; disturbance-utilizing
control. Disturbance present: gravity.

a) Fixed target at 0. ft down-range, 0. ft

altitude.

b) Initial missile ground-range -7228. ft

c) Initial missile altitude 3480. ft

d Initial missile offset normal to
REF LOS, xl(o) -600. ft

e) Initial missile range along
REF LOS -8000. ft

f) Initial missile velocity normal
to REF LOS, x2(0) 0. ft/sec

g) Missile velocity along REF LOS
(constant, toward target) -2000. ft/sec

h) Angle of REF LOS from horizontal 30. deg
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i) Specified terminal time T 4.0 sec

j) Disturbance: gravity, nonhelpful

k) Control weighting parameter r 1.0

1) [1 =]

M) Q =[0 0

s 10  0]

The computer results were obtained for Sub-case 4.3.2,

and the final optimally controlled missile trajectory is

shown in Figure 4-48, with the associated disturbance-

utilizing control force muO displayed at 1 sec intervals.

This case has a 600 ft initial offset from the REF LOS

(twice that of Sub-case 4.3.1) and the geometry of this

problem makes the gravity disturbance non-helpful, in

contrast with Sub-case 4.3.1. As a result, the control

force magnitudes for this sub-case are considerably larger
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muC , x 1

15000 0

CONTROL FT

FORCE -100

POUNDS
10000 -200

-300
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-500

0 -600
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SEC T

Figure 4-49. Control force for Sub-case 4.3.2; disturbance-
utilizing control.

than for Sub-case 4.3.1 (see Figure 4-49). The missile

trajectory angle for Case 4.2.2 goes from 30 degrees at

t = o to about 24 degrees at t - T; the maximum error in

the angle ,)f application of the control force is -6 degrees,

which results in the application of 99.5% of the control

force mu0 normal to the REF LOS. As in Sub-case 4.3.1,

the coitrol force for this case (Figure 4.49) is almost a

linear function of time.

The time-histories of the states xI and x2 are

plotted in Figure 4-50. As in Sub-case 4.3.1, no terminal

-4
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Figure 4-50. State histories: xI and x2 for Sub-case

4.3.2; disturbance-utilizing control.

penalty is placed on x2, and a relatively large value

of x2 (T) results. The disturbance in this case (Figure

4-51), which is the projection of the gravity acceleration

normal to the REF LOS, is non-helpful, since it acts to

hinder the missile from the intercept objective. As a

result, the disturbance utility (Figure 4-52) is either

negative or zero for the whole flight.

The disturbance-utilizing controller for Sub-case 4.3.2

performs better than the conventional linear-quadratic

controller (see Table 4-6) even in the face of the totally

detrimental disturbance, which indicates that, even though

positive utility is never available, the disturbance-

utilizing control law still does better in managing the

states of the plant relative to the disturbance states.
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Figure 4-51. Disturbance acceleration w for Sub-case 4.3.2.
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Figure 4-52. Disturbance utility for Sub-case 4.3.2.
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TABLE 4-6. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER
COMPARED WITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FOR SUB-CASE 4.3.2.

Miss-
PERFORM- DISTANCEORMAL
ANCE CONTROL CONTROLTo REF LO

INDEX ENERGY FUEL TO (T)

J T EU EAU (T) 6MD
%T (FT) %

0.158 0.157
DUC XI05 14.2 X105 306.0 -3.8 75.8

0.183 0.171
te xi°5  Xi05  358.0 -15.7

NOTE: SEE PAGES 202 AND 205 FOR DEFINITIONS
OF J, e T , EU, EAU AND XMD"

The effectiveness (Figure 4-53) for Sub-case 4.3.2 shows

that the disturbance-accommodating controller continues to

achieve a lower J as the specified terminal time is

increased.

4.3.3.3 Sub-case 4.3.3 - Planar Homing Intercept

with Trajectory Angle Specification at Terminal Time. Dis-

turbance Inputs:

a) Gravity (helpful)

b) Wind (non-helpful)

In this sub-case we consider the performance of a

missile with disturbance-utilizing control in a planar

homing problem which has the primary objective of

intercepting the target and secondary objectives of
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TOTAL J - JDUC
4 T EFFECTIVENESS x LQ D 100%40 JLQ

30

20

10

0 T
0 1 2 3 4 5 6

SEC

Figure 4-53. Total effectivenesseT versus specified
terminal time T for Sub-case 4.3.2.

(1) Achieving a specified orientation of the

velocity vector angle (the trajectory angle) at terminal

time, and

(2) Effectively utilizing "free" disturbance

energy.

Realization of the angle specification leads to a con-

sideratiot of a terminal weighting matrix S with non-zero

weighting on x2(T). The missile-target geometry for this

sub-case is shown in Figure 4-54. The parameter values for

Sub-case 4.3.3 are:

a) Fixed target at 0. ft down-range, 0. ft
altitude.

b) Initial missile ground-range -6778. ft

c) Initial missile altitude 4260. ft
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d) Initial missile offset normal to
REF LOS, xl(o) 300. ft

e) Initial missile range along
REF LOS -9000. ft

f) Initial missile velocity normal
to REF LOS, x2(o) 0. ft/sec

g) Missile velocity along REF LOS
(constant, toward target) -2000. ft/sec

h) Angle of REF LOS from

horizontal 30. deg

i) Specified terminal time T 4.5 sec

j) Disturbances: gravity
(helpful) and wind
(nonhelpful)

k) Control weighting parameter r 1.0

1)
s[0 a]

to achieve weighting on xl(T) and X2 (T).

m)

SQ=[0 001

The optimal disturbance-utilizing control for sub-case

4.3.3 c compited as in the previous homing intercept prob-

lems, cid the resulting missile trajectory is shown in Fig-

ure -5_.5, with the disturbance-accommodating control forces

displayed at selected times. Note the increased level of

muO at t = 2.0 (compared with the level at t = 1.0)

required to handle the wind disturbance which begins at t =

1.7 seconds and ends at t = 2.5. The control at t = 2.5
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reflects the wind disturbance and the requirement to achieve

the specified angle at t = T. The result is a reversal in

the sign of mu0 for the remainder of the flight. Con-

siderable control force levels are required for this case as

t - T, as distinguished from the previous cases (with no

angle specification) which had the control approaching zero

for t + T.

The effects of the wind and the angle specification on

the co'atLroL are clearly seen in Figure 4-55, where a large

transient is required between t = 1.7 and t - 2.5 to handle

the wind and the control force continues to increase as

t - T. No wind disturbance effects are seen in the be-

havior of the states xl and x2 (Figure 4-56), indicating

that the disturbance-utilizing control is doing very well in

accommodating the disturbance. The effect of the velocity

weighting term in S is seen as the decrease in the value of

x2 as t - T. This assures that the velocity vector of

the missile lies almost parallel to the reference LOS as

t - T; i. e., along a direction very close to 30 degrees

from the horizonLal. To achieve an arbitrary angle ah re-

lative to horizontal, it is only necessary to specify the

value of 1h at the beginning of the problem, which auto-

matically defines the xj and reference LOS coordinates.

This feature of the model, which was suggested in 1351, is

applicable to a general class of homing intercept problems

where the approach angle is important.
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0
mu

10 000

CONTRO
FORCE

POUNDS

5000

0. t0 l. 3.0 4.0 4.5

sec T

-5000

Figure 4-55. Control force for Sub-case 4.3.3, disturbance-
utilizing control.

x I  x 2

ft ft/sec
300 0-

200 -50 \ /
\ /

100 -100-

t 0 -150 1.0 2.0 3.0 4.4. t

sec T

Figure 4-56. State histories: x1 and x2 for Sub-case
4.3.3, disturbance-utilizing control.
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Figure 4-57 shows the disturbance inputs for this

problem. The wind disturbance waveform is as given in

Figure 4-5; the orientation of the wind for Sub-case 4.3.3

is along the positive xl coordinate, such that the wind

acceleration WINDM of Figure 4-5 is tending to move the

missile away from the REF LOS. The gravity component along

xI is negative, acting to move the missile toward the REF

LOS.

The effects of the disturbances result in a utility

value which is almost always negative (Figure 4-58) except

for two very brief positive excursions resulting from the

derivative of the disturbance. Recall that the utility

function (Equation 2.108) depends on all elements of the

disturbance vector z, which includes zI - w and

z2 z1 = w in the disturbance model (Equations (4-69) -

(4-73)) being used).

The performance of the missile with disturbance-

utilizing control is summarized in Table 4.7, where it is

compared with that of the conventional linear-quadratic

controller. The disturbance-utilizing controller achieves a

lower value of J (and therefore a positive total

effectiveness eT); uses less control energy, based on EU;

uses less fuel, based on EAU; and achieves a lower value of

xl(T). Inclusion of terminal velocity weighting in this

problem results in trajectory angles (at t - T) of -0.307

degrees and -1.52 degrees (relative to the 30 degree

orientation of the REF LOS) for the disturbance-utilizing
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20-
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Figure 4-57. Disturbance acceleration wl for Sub-case
4.3.3.

-0/1

10 000,

01 t
44 20 .0 4_5

Sec T

-10 000.

-20 000-

-30 000-

-40 000

-50 000

Figure 4-58. Disturbance utility for Sub-case 4.3.3.
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TABLE 4-7. PERFORMANCE OF DISTURBANCE-UTILIZING CONTROLLER
COMPARED 4ITH CONVENTIONAL LINEAR-QUADRATIC
CONTROLLER FOR SUB-CASE 4.3.3.

MISS-
PERFORM- CONTROL CONTROL DISTANCE TRAJECTORY
ANCE ENERGY FUEL NORMAL ANGLE ERROR
INDEX TO REF LOS AT t=

J eT E U EAU X1 (T) MD (DEGREES) 'A
I _ I (FT) %

DLC0.711 0.652
DUC 4  13.5 04 200.0 0.7 85.1 -0.307 -100X10 X1 4

LQ 0.821 0.753 229.0 -4.70.5LQ 22.0 -47-0.152
1X104 E XI0 4 1 x

NOTE: SEE PAGES 202, 205, AND 220
J[ TI EU, EAU, 0MD AND A

and conventional LQ controllers, respectively. This is

reflected in the large negative value of e1A, where

RA (angle error at t=T)I-(angle error at t=T)DUCx (4-82)

(angle error at t=T)LQ

However, both controllers show very good control of the

trajectory angle at t = T. Note that the DUC in this sub-

case achieves much smaller miss-distance than the LQ
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controller, at the expense of a larger angle error at t - T.

In those applications where larger trajectory angle errors

can be tolerated, less weight may be placed on the velocity

state (in matrix S), which should lead to lower values of

control energy and fuel comsumption, and/or lower values of

miss-distance xl(T). The total effectiveness T for

this sub-case is positive for various values of specified

terminal time T (see Figure 4-59), demonstrating that the

DUC performance is consistently better than that of the LQ

controller.

A 9T TOTAL JLQ -JDUC x 100%
% 40- EFFECTIVENESS JLQ

30-

20-

10-

0. T
0 1 2 3 4 5 6

SEC

Figure 4-59. Total effectiveness eT versus specified
terminal time T for Sub-case 4.3.3.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS
FOR FURTHER WORK

5.1 Introduction

The research described in this document constitutes

the first application of disturbance-utilizing control the-

ory to missile guidance problems. In fact, the work de-

scribed herein is apparently the most substantial applica-

tion of disturbance-utilizing control theory so far attemp-

ted for any control problem [38]. This chapter presents the

conclusions of this research and offers recommendations for

further work.

5.2 Conclusions

The results of this investigation have demonstrated

that, in many cases, the disturbance-utilizing controller

produces significantly better performance than the con-

ventional linear-quadratic controller. This superior

performance is realized even when the relationship between

the plant state x and the disturbance state z is such that

the disturbance utility W is never positive during the con-

trol interval. The concept of "effectiveness" and associ-

ated effectiveness measures such as total effectiveness

222
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OT, and miss-distance effectiveness (MD has been intro-

duced as a means of relating practical aspects of the

performance of the disturbance-utilizing controller to those

of a conventional linear-quadratic controller under the same

conditions. By means of these performance measures it has

been shown that a large class of missile/target/disturbance

scenarios exists for which the disturbance-utilizing con-

troller provides significant improvements over the con-

ventional LQ controller in terms of practical criteria used

in the missile industry. For example, in the seven mis-

sile guidance cases considered in Chapter IV, the terminal

miss-distance obtained by the disturbance-utilizing control-

ler ranged from 3.4% to 56.1% of the terminal miss-distance

obtained by a conventional linear-quadratic controller under

identical conditions. In addition, although the seven mis-

sile guidance cases of Chapter IV were designed with minimum

miss-distance as the primary control objective, in most cas-

es the disturbance-utilizing controller required less con-

trol energy and less control fuel than a conventional

linear-quadratic controller. In one homing intercept pro-

blem (Sub-case 4.3.1) the control energy and control fuel

required by the disturbance-utilizing controller were only

6.7% and 25.7%, respectively, of the control energy and

control fuel required by a conventional linear-quadratic

controller.

The necessary and sufficient conditions have been found

for the existence of steady-state solutions of the six
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unilaterally-coupled matric differential equations which

govern the solution of the set-point and servo-tracking

problems in disturbance-utilizing control. These conditions

determine the existence of steady-state disturbance-utiliz-

ing control laws. Futhermore, it has been shown that these

steady-state solutions, when they exist, are solutions of

certain matric algebraic equations. Numerical computational

approaches have been suggested for obtaining the steady-

state solutions.

Several mathematical/geometric properties of the util-

ity function ii, in the case of time-invariant systems, have

been found; namely,

(a) An expression has been obtained for the zero-utility

boundary, in the set-point regulator/servo-tracking distur-

bance-utilizing problem, for the case of p > n + v ( p is the

dimension of the disturbance state vector z, n is the

dimension of the plant state vector x, and v Is the dimen-

sion of the set-point vector c).

(b) The size of the positive-utility domain in the set-

point regulator/servo-tracking disturbance-utilizing problem

with o - n = v = 1 is described through the introduction of

a new parameter 8 cz (the angle, in the c-z plane, between

the zero-utility planes). This parameter is used in con-

junction with the previously-used paramenter exz (the an-

gle, in the x-z plane, between the zero-utility planes) to

allow a graphical interpretation of the size of the

positive-utility domain throughout the control interval.
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(c) The limiting behavior of the utility function iI(t)

and its derivative dA/,dt has been determined for t - T (i.e,

at the terminal time) and for the steady-state condition

(where "backward-time" T - ). In addition, the

critical-point condition which characterizes the location of

maximum-/ with respect to z in (x, c, z)-space has been

derived.

In this document, derivations have been presented

for the steady-state gain expressions associated with

(1) a scalar regulator with a constant disturbance, for

both the zero set-point and non-zero set-point cases;

(2) a scalar regulator with an exponentially-decaying

disturbance, for both the zero set-point and non-zero set-

point cases; and

(3) the zero set-point regulator with a second-order

plant and a vector (two-dimensional) disturbance.

In addition, numerical solutions have been obtained for

each case, which allow the performance of the disturbance-

utilizing controller to be compared with that of a con-

ventional linear-quadratic controller.

The robustness of the disturbance-utilizing control law

relative to a mismatch between the disturbance model and

actual disturbance inputs has been examined in this study.

Several missile guidance cases are considered in which dis-

turbance inputs (e.g., aerodynamic drag and winds) are

proximately modeled by the assumed mathematical disturbance

process. Specific cases of intercept problems have
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indicated that the match between drag waveforms and the

assumed "step plus-ramp" second-order disturbance model is

excellent. Some performance degradation can be detected

when the faster-changing wind waveforms are experienced, but

the overall effectiveness remains high as long as the faster

modes of the waveforms do not constitute a dominant part of

the disturbance. Whether or not one should attempt to mod-

ify the mathematical disturbance model to obtain a closer

match to real-life disturbance waveforms depends on the

results of a trade-off between increased design complexity

and incremental performance improvement to be gained.

A unique digital-computer analysis tool (DUCAT --

Disturbance-Utilizing Control Analysis Technique) has been

developed for implementing the disturbance-utilizing control

law, the equations of the plant being controlled, and the

disturbance models. The computer program also implements

the corresponding conventional linear-quadratic control law

for comparative analysis in terms of the effectiveness of

the disturbance-utilizing control law. A key feature of

DUCAT is the capability of obtaining the "T-Minimin" value

of the optimized performance index J°[T] for a given distur-

bance utilizing or conventional linear-quadratic problem.

The program determines the optimal values J°[Ti] for a

selected set of values of specified terminal times T. in1

some specified interval [Tmin' Tmax]* Then, the program

selects the minimum optimal value J0 n among that set andmin
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then displays the optimal control and trajectory for the

particular T corresponding to Jmimin

The control of an air defense interceptor missile in the

face of a disturbance environment consisting of gravity, aer-

odynamic drag, winds, and target maneuvers has been found in

the context of a general planar geometry configuration. In

this approach, the components of the disturbance-utiliz-

ing control are determined along the missile's longitudinal

and lateral coordinates. The problem of controlling a hom-

ing missile to a ground-based target in the face of gravity,

winds, and a specified trajectory approach angle has been

solved by using a so-called "small line-of-sight angle"

geometry, in which the disturbance-utilizing control force

is found as a force normal to a reference line-of-sight

passing through the target position. Although the "small

line-of-sight angle" homing model as applied herein is used

for fixed-target cases, this model may also be applied to

the disturbance-utilizing control of a missile in an air de-

fense role against a maneuvering target. The disturbance-

utilizing controller is seen to be well suited to ac-

commodating typical target maneuver waveforms.

5.3 Recommendations for Further Work

The present study has uncovered several areas for

further work in disturbance-utilizing control theory. In

particular, it is suggested that further work be directed as

follows:
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(a) The application of disturbance-utilizing control

should be considered for a three-dimensional, 6-degree-of-

freedom missile intercept model with complex aerodynamics,

control limits, autopilot dynamics, and a non-ideal state-

reconstructor. This would be a logical follow-on to the

present work. Computational algorithms for obtaining the

time-varying gain matrices Kx(t) and Kxz(t) should also

be investigated as part of this applications-oriented task.

(b) The applicaticn of disturbance-utilizing control to

a discrete missile control problem would be useful, in view

of the trend toward using sampled-data and microprocessor

techniques in future missile designs. Relevant work in this

area includes investigating ways to obtain the time-varying

gain matrices for this problem via solutions of difference

equations or by implementation of alternative, discrete

algorithms for generating these matrices. Other work may

include the formulation of the discrete plant/disturbance

state reconstructor (estimator) for the discrete missile

control problem.

(c) The design of the performance index for disturbance-

utilizing control appears to be a fruitful area for further

study. One question of particular interest is how to choose

the performance index parameters S, Q, and R, in the general

case, to maximize utility and effectiveness. Also, how to

enhance utility and effectiveness (possibly by using time-

varying parameters 0 and R) during critical parts of the

iii,
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control interval, such as, for example, near the terminal

time. Another question of interest is how to choose S, Q,

and R in a systematic way to achieve missile trajectory

shaping and to reduce the sensitivity of intercept perfor-

formance to errors in estimating time-to-go. In this re-

gard, results from the homing intercept Case 4.3.3 of the

present work indicate that the use of non-zero weighting on

the "velocity" state at terminal time (in the S matrix)

produces terminal performance which is less sensitive to the

choice of specified terminal time T than for the standard

intercept problem where only the position states are

weighted.

(d) An investigation of multi-mode disturbance-

accommodation in the missile guidance problem should be

profitable. For example, some missile intercept scenarios

may call for a combination of disturbance absorption/

minimization and disturbance-utilization. An interesting

question in this regard is how to relate mode-switching

criteria to utilization and effectiveness levels, recog-

nizing that positive effectiveness may be obtained, in the

disturbance-utilizing mode, even when the utility is

negative. The design of disturbance-absorbing controllers

by the generalized "algebraic/stabilization method" [39] may

be useful in such problems.

(e) A systematic method for finding a dynamic mathema-

tical model corresponding to actual measurements of real-

'I'
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APPENDIX A

AN EXAMPLE DESIGN OF A REDUCED-ORDER
COMPOSITE-STATE RECONSTRUCTOR (ESTIMATOR)

A.1 Introduction.

This Appendix describes an example design of a

reduced-order composite-state reconstructor (estimator) for

a system with a second-order plant and a second-order

disturbance model. The purpose of this Appendix is to

illustrate the design approach to, and final form of, a

composite-state reconstructor for a typical missile

application. The plant and disturbance models used in this

example correspond to the missile homing problem considered

in Section 4.3 of Chapter 4, with the exception that in the

present case it is assumed that the output y consists of

only the one state element x I . The only on-line input

data available to the state reconstructor is the output y(t)

and the control u(t).

Johnson [51, [36] has formulated and solved the problem

of observing the states x and z of the general time-varying

linear dynamic system

x - A(t) x + B(t) utt) + F(t) w(t) (A-1)

238
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Y = C(t) x (A-2)

z = D(t) Z + M(t) x + a (t) (A-3)

w(t) = H(t) z + L(t) x (A-4)

where x is an n x 1 plant-state vector, A is an n x n plant

matrix, B is an n x r input matrix, u is an r x 1 control

vector, F is an n x o disturbance input matrix, w is a p x 1

disturbance vector, y is an m x 1 output vector, z is a

Q x I disturbance state vector, D is a p x p disturbance

process matrix, M is a p x n matrix, a is a sparse sequence

of impulses, H is a p x p disturbance output matrix and L is a

p x n matrix. One "recipe" for building a physically

realizable device which operates on the output y and the

control u to produce estimates of x and z is given by [5],

138]

S A + FL + KC FH
M +] - y (t) + - (t)
M + K2C D(A-5)

where all the matrices may be time-varying, x and z are

estimates of the plant and disturbance states, and K1 and

K 2 are gain matrices which are chosen to stabilize the

solution of Equation A-5. The state reconstructor

Equation A-5 has dimension (n + p). In a 1971 paper (6]

Johnson derived a different form of observer for general
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time-varying systems of the form Equations A-I - A-4. This

different state reconstructor has reduced dimension

(n + P - m), where m is the rank of the output matrix C.

The recipe for this reduced-dimension state reconstructor

may be stated as follows: The estimates x of the plant

state and z of the disturbance state are given by the

algebraic "assembly" equations

= [CT (CCT)-l - T12  y + T12  (A-6)

z = T2 2  (; _ y) (A-7)

where the auxiliary variable (t) is generated on-line by

the (n + p - m) - degree system (dynamic filter)

(A-8): = ('J + r) + y + u

The filter (Equation A-8) is driven by the plant output y

and the control u, and the matrices in Equations A-6 - A-8

are defined as follows:

a) The matrices T1 2 and T2 2 have dimensions
n x (n + p - m) and p x (n + p - m), respectively, and are

chosen to satisfy
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It is remarked that T12 and T22 always exist, are not

unique, and are readily computed.

b) The elements of the matrix E are chosen to

satisfy certain stability specifications, as will be seen in

the example to follow.

C)

[TIT (A FH 2ll 2 1A10

ar~F 2o~ -~T [1 2 (A-1l)

d)

12~ + E C) (A C T- # T) - g + E jr) E + z(A-12)
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= ( T 1 2 + ZC)B (A-13)

C # 
- (CC) - C (A-14)

e)

T2 (T 2 T  + T) 1 (A-15)12 12 T22 T T22  TI2T

T22= (T12T T1 2 + T22T T22)-1 T22T (A-16)

The reduced-dimension state reconstructor Equations

(A-6) through (A-8) produce estimates which have estimation

errors Cx x - x and Cz = z - z given byII
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e =x x T1 2 e (A-17)

Cz = z - z = T22 (A-18)

where the error variable e is governed by

= (,+ E W) c+ T22 a (t) (A-19)

where, as mentioned before, E is chosen to satisfy the

stability requirement that Et) - o promptly, from any

initial condition e (to).

A.2 The Design Example

In this section we consider the design of a

reduced-dimension composite-state reconstructor for the

special case where the system matrices have constant

elements and are specified as
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0 (A-20)

(A-21)

C0] (A-22)

D= 0 (A-23)

F (0) (A-24)

H=[1. 0] (A-25)

This problem has

n - dim A - 2

o - dim D - 2

m - rank C - 1
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Hence the reduced-dimension observer has dimension

(n + p - m) = 3.

The matrices Ti2 and T2 2 are respectively, any

n x (n + P - m) = 2 x 3 matrix, and any p(n + p - m) - 2 x 3

matrix satisfying

[c Io] [T-2 ] 0 ; rank .(A-26)T 2122 J(-6

We will choose

T12 [ 0 0 (A-27)

1 0] (A-28)T22 [0 0 1

It is readily verified that

1 0 0 0 10 0 0
0 1 0
o [ 1 0
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rank 1 0 _0 3 (A-30)

and therefore A-26 is satisfied. Then we have

- T T T 0  0 1 (
T12 (T1 2 T1 2 + T22 T22  T12  0 (A-31)

1212 22T 2 ) 0 010

T (T T T + T TT T2 T~ [ i 0]32
22 121=2 2 2 0 (A-32)

0 1

Next, T1 2 and T22 are used in Equations (A-10) and

(A-I) to find !/: and '. The result is

0 1 0
0 0 1 (A-33)

o 0 ] (A-34)
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The characteristic matrix of the error Equation (A-19)

is

S+ E,, ) 2 0 1

(A-35)r3  0 0

which has eigenvalues which satisfy

X3 _ E1 X2 _ E2 X - E3 0 (A-36)

which may be written as (note; the E are all real)

(X + a) (X 2bX-c') a 0 (A-37)

The roots of Equation (A-36) may be written

X =-a ;a > 0 (A-38)

1 1

X2 ,X b= b b 2 + 4c b < 0
3 2 2

(A-39)

where

b- a = E1 (A-40)
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a b + c = 2  (A-41)

a c = Z3 (A-42)

For this problem, the design parameters a and b are chosen

to give eigenvalues with relatively large negative real

parts in order to obtain fast settling times for the

estimates. The following values were chosen:

a = 30 (A-43)

b = -42 (A-44)

c = -541 (A-45)

The corresponding eigenvalues are

X= -30 (A-46)1

A2 fA 3 = 21 + j 10 (A-47)

which yield the values

ZI b a -72 (A-48)
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Z2 = ab+c - -1801 (A-49)

E3 - ac = -16230 (A-50)

Next, Equation (A-12) is used to find

(2 2  - 3,383= 1EI2 + E 3 113,442 (A-51)

/iT.3 1,168,560

and Equation (A-13) is used to compute

fl C) C0
E 2  0 (A-52)

E3  0

The differential equation governing the auxiliary

variable F is thus obtained as

1 12

Z2 " 2 0 1 &2 + -E 1 E2 - y Y (A-53)

(43) 'E3 0 0 (&3) El. Z3

+ 0 U

0
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where El , E2 and E3 are specified in Equations (A-48)

through (A-50).

When the parameters of this example are substituted

into Equations (A-6) and (A-7) the state estimates become

0 (A-54)
x Y + (

Z E 3 Z3 y(A-55)

where the values of Z1 , Z2 and E3 are specified in

Equations (A-48) through (A-50) and i, 2 and E3 are

the solutions of Equation (A-53).

A block diagram of the final state reconstructor is

shown in Figure A-1.

If the gain values in (A-48) - (A-51) are judged to be

too large, they can be reduced by making appropriate reduc-

tions in the (magnitudes of the) real parts of the choosen

roots (A-46), (A-47).

ii
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APPENDIX B

i

DIGITAL PROGRAMS FOR ANALYSIS OF
DISTURBANCE-UTILIZING CONTROL SYSTEMS

B.1 Introduction.

This appendix describes the digital computer programs

used in Chapters III and IV to solve for the disturbance-

utilizing control and to obtain data used in the analysis of

its performance. The basic program, called DUCAT (Distur-

bance-Utilizing Control Analysis Technique), has three

versions: DUCATl--for scalar plant/scalar disturbance/

scalar set-point problems, DUCAT2--for zero set-point

problems with a second-order plant and a second-order

disturbance model, and DUCAT3--for zero set-point problems

with a fourth-order plant and fourth-order disturbance model

(or two second-order disturbance models).

The DUCAT program can implement either a disturbance-

utilizing control law or, for comparison, a conventional

linear-quadratic control law for a time-invariant: plant

(2.1), (2.2), disturbance-command models (2.3), (2.4),

(2.6), (2.7) and performance index (2.5). The time varying

gains are obtained by solving the matric differential equa-

tions using Runge-Kutta fourth-order integration via ACSL
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(Advanced Continuous Simulation Language) on a CDC-6600

computer. ACSL is also used for integration of the plant

differential equations. Initial conditions for the forward

integrations of the gain equations are found by performing

backward-time integrations of these equations, starting at a

specified terminal time T, with the known terminal

conditions, and integrating back to the time to = o. The

values of the gains at t - o are then stored, to be used as

the initial conditions for the subsequent forward-time runs.

This procedure is used to avoid the storage requirements

associated with storing the gain time-functions for all

o < t < T.

An important feature of DUCAT is the capability of

solving for the "T-minimin" values of the performance index

J, in either the disturbance-utilizing or conventional

linear-quadratic problem. The values of J[Til are

obtained for a selected set of values of specified terminal

timej Ti in some specified interval [Tmin, Tmax]. The

program then selects the minimum value Jmin among that set

and displays the optimal control, state trajectory and

related parameters for the particular Tmin corresponding

to Jmin.

The flow of the basic DUCAT program, which describes

all three program versions, is presented in Figures B-I and

B-2. Listings of the three program versions are contained

in the following sections.
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ARRAY (DIMENSION)

NOSE INPUTS TO WD NE:

FRADINTEGRATIONS

OF QANT INNS FOR
Kx. xz i" ETC.

COMUT UUTS GAN 3 XZ T.

OUTPUS O

OTPUT:FML
OSPONIN T

YES ESST T A LUS
Figure~~~~Ti M-.Fwo UAXrgam is sget
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FROM TEST ON I

INPUTS: FAMILY OF
J. VALUES

AND T. VALUES
1-

FIND MINIMUM VALUE OF J
AMONG THE Ji; IDENTIFY THE

CORRESPONDING Ti.

LOOP 4 OUTPUTS: MINIMUM Ji
AND ASSOCIATED T.

ONE FORWARD RUN FOR RECORD
USING THE (Ti) WHICH GIVES
MINIMUM (Ji). USE
GAIN MATRIX IC'S ASSOCIATED
WITH THIS Ti . COMPUTE X, KX, KXZ,

KZ, U0 J, UTILITY, ETC.

i YES T NI

PLOT: X, Z, KXij, KXZij, KZij,

UTILITY, ETC. FOR THE RECORD
RUN WHICH HAS J=J MIN. ALSO

OUTPUT TABLE OF J VALUES VS T,
PRINT MISS DISTANCE.

Figure B-2. Flow of DUCAT program, final segment.
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B.2 Program DUCAT1

This section contains the listing and parameter

definitions for the DUCAT1 program, which solves for a

disturbance-utilizing control or a conventional

linear-quadratic control in regulator problems involving

scalar plant/scalar disturbance/scalar set-point. Non-zero

set-point or zero set-point regulator problems may be solved

by DUCAT1. Input parameters (determined by "SET" statements

near the end of the program), and plot output parameters

(identified in the "PREPAR" statement at the end of the

program) are defined below. In addition, the printed output

parameters are also defined.

INPUT PARAMETERS

PARAMETER DEFINITION

ALPHAS a as defined in Chapter III.

AS A as defined in Chapter III.

BS B as defined in Chapter III.

CINTFD Forward-time data communication
interval (sec).

CINTBD Backward-time data communication

interval (sec).

CS C as defined in Chapter III.

CSETS Set-point input (ft).

-jm
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Cis C1 as defined in Chapter III
(ft/sec2 ).

DTBCK Integration interval, backward-
time (sec).

DTFWD Integration interval, forward-

time (sec).

ES E as defined in Chapter III.

FS F as defined in Chapter III.

GS G as defined in Chapter III.

HS H as defined in Chapter III.

IALG Logic input. Selects fourth-order
Runge-Kutta integration when
IALG = 5.

OS Q as defined in Chapter III.

RS R as defined in Chapter III.

SS S as defined in Chapter III.

TFINIT Maximum value Tmax for final-
time scan (sec).

XSIC Initial condition of the state
x (ft).
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PLOT OUTPUT PARAMETERS

PARAMETER DEFINITION

T Program time (sec).

XSP x as defined in Chapter III.

ZSP z as defined in Chapter III.

KXSP kx as defined in Chapter III.

KXCSP kxc as defined in Chapter III.

KXZSP kxz as defined in Chapter III.

KCSP kc as defined in Chapter III.

KCZSP kcz as defined in Chapter III.

KZSP kz as defined in Chapter III.

WSP w as defined in Chapter III.

VSP Unused.

UOPTSP uO as defined in Chapter III.

BURDSP Burden as defined in Chapter III.

ASSISP Assistance as defined in Chapter
III.

UTILSP Utility as defined in Chapter III.

THXZSP exz as defined in Chapter III.

THCZSP 9cz as defined in Chapter III.
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PRINTED OUTPUT PARAMETERS

PARAMETER DEFINITION

KXST Stored initial-condition of kx.

KXCST Stored initial-condition of kXCI

KXZST Stored initial-condition of kxz

KCST Stored initial-condition of kc.

KCZST Stored initial-condition of kcz.

KZST Stored initial-condition of k2 .

TAUTAS A particular specified terminal
time Ti.

JMATAB Value of eT(T) s e(T).

T T
J2TAB ValIue of f * (t) qe (t) dt

0

T 2
J3TAB value of f r u (t) dt,

0

JTFTAS J (T)

XTABS x(T).

The listing of Program DUCATI follows:
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PR06RAN OPTG __________________

114E(NT COMPUTE OPTIMAL COTRIOL FOQR V.Asj OF Mli~LL rNIE(#.EVI
C WITH4 DISTURBANCES PRLzNT

ALSO COM4PUTE TH~E MINIMUM J IN A FAMILY OF J S
C THEN COMPUTE A4S1STANCE BURUEN ANU UTILIZATION AND PLOT g

INI TIAL.
ARRAY KX5T(IUU,,KXCST(IpOJKXZSTlgl~gJ
ARRAY KCSY119C)9KCZ4111L0),I(ZST410C)
ARRAY XTASi±O)
ARRAY JMATAB(lOO),j2TAB4I,:),JJTA8I1COI
ARRAY JTFTASEID3I
ARRAY TAUTAS(IOC)

INTEGER liJ
INTEGER NS

CONSTANT UTFWUC0. , F1NI 1 U*.UTH(LK=U.

CONSTANT ASa~O.dSZO.,CSJ. ,CSETSaC.,OS=C.,FSz&.
CONSTANT CiSw0..ALPHASuG.
CONSTANT ES=a.
CONSTANT GSsa.,S:.9QSE.,RSzD.,SSzr.
CONSTANT eXS=C.,KXC.)=C. KXlS:O.,KCS=GvKZz tZ~O
CONSTANT XSIAUD.
CONSTANT WSPz0., BUU VP=3. ASSISP=C., UTILjPzO.

LOGICAL FWDBN1iOLAST

NSa 1
F14SzFSwHS
BSOR= EBS**21/RS
IXSIC:(Cif*2) W55
IC-XCSIC-CSSS*GS________________________
KXZSIE;=U.
KCSIC=4GS**!)SS

KZSICGQ.
F WDBWD= .FALSE.
LAST' .FALSE.

CONSTANT t;INTLFz0.0CL
CONSTANT CINTF~z0.I,CINTaDz .1
MAX rsRSN(FWDOWO.OTFWUvTC(I
TSTP z 100o

ASS IS 5' .
TI4XZS:-U.
TN4CLSx0.
UTXLS=D.

I'u- 'AliW
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KXCSP=O.
KXZSPO0.
KCSP= C.
K CZ S Pz
KISP=E.___

TNCZSP= 0.
X SP: C.
ZSPzc.
UOPTSP= 0.
.JMAYESS 0*

END X "INITIAL-
DYNAMIC

CtNTERVAL CINT=0.l
MAXTERVAL MAXT.C'61

CINTFI: RSM (LAST ,CINTLF,CINTFU)
crRT.RSMCFWDBWD,CInTFL.crNTBDJ
VARIABLE T=O.

ALGORITHM rALG=4
IF (FWL)BML) GO TO SKPSV

-- TTTTI. Er.Vu.-T-U I u ;:,r~zV

NS%.NS4I
)( XS T (NIS) KI(S
KXCiT (NS)zKXCS
KXZSTtfINS=KXZS
KCST i"S)= KCS

KZST (NS )=KZS
SKPSV.. *CONTINUE

TERMT(A3S(T-7FINIT).LE.kINT30AND..NOT.FWDWOI
IF(FODDWO) TSTP=CINrBOOFLOAT(NS)-
IFIFIDBWW) CINT=AMI41 (CINIFL ,TSTP-TI
6UN51ANI ltmUrlrI21,t-Z-_________

TERN4T ABS IT-TSTP) .LE. rGOMN.AND.FWDi3WD)
DERIVATIVE OPTGN

CALL FTNDRV
KXS=INTEIG(XSD, KXSIC)
eXCszINTEGlICXCSJrKXCS IC) _______

KCS:INTEG(KCSiJ, kCSIC)
KCZS=INTE~IKlCZS'D KCZtSlt~
KZS-It.7.EG(KZS09KZSIC)
XS=INTLG(XSTJXSICI
JZ=IN (EG(J200T,2. I

THXZS:ATAN2(-2.#KXZS,(KZS+1.L-3i,)57.29578

END S "L)IRIVATIVE"
END S -UYNAMIC-
TERMINAL
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IF (FWUBWU.ANU*LAST) (G0 TO TERM_________

v I s NS I
9,60*se FORMAIITI1),6EA5.5)

IN4TEGER NSFNL
N SF NL S______________

F MdWDzU aTRUE.
GO To SEMI

CYCLE. .CONTINUL
JN&it(SuO.~SSCS~CSfSlxs-2.SSCSGSDC'TSIS...
* SSfGS*GSCSE TSC ,E IS)_____________
JYPSa JNAVES+J2+JJ
JMA IAS( N:0&JMAYE S
J2TAB INS) aJ2
J3TAbINS)a-J3
XTABS INS) -XS
JIFTASINSlaJlIS ____ __ _______

TAUTASINSIn't

SET IC. .NSzNS* I
IF lNS9GT.NSFNLl GO TO FNLRUN

RECORe.* CONTINUE
K XSIC"(KXS! INS)______________
KXUSI ' KXUSr (Ns
KXZS!caKXZST INs
KCSIC*KCSTINS)
KCZSICAKCZST INS)
K ZS ICaK ZST INS)

LOG_____

60 TO LCoP
FNLRUN. .CONTINUE

JZEiROS: .E30
00 JHINS TaINSFNL
IFIJZiLROS.LT.JTFTASiI)) GO TO JMINS
JZERWU'SJIIJA5 II
TFZERziaAUTASI
NS-I

JMINS*. CUNTINUE
N 5af
WRITEI6*11)91 (TAUTAz-II) ,JMATA8I),JZTAOI),J3TAIII,

JTFTAS(I),XTA5NII),IT1.N'SF{LT -
199.. FORMAT I1,F8.2,!Z2..iOL.',TS5,EIL.% ,T5UEIG. 4,

RLWINU 8
LASTm.TRUE.
G0 TO RECOR _____

TRN. .ONTlNUE
END S "TERMINAL"
END S wPROGRAM"

*A
I ~ ~ ~ ~ - N(~ A :' .NT
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SUBROUTINE FTNDRV

4iS -AL PHAS
IF (FUOWDI GO TO IC03

-C- UEf -OLRIVAtlvts FOR~ 8ACKWAkU INTZGRATION,
KXSOz £AS-9SOR9Kg5S *KXS+KXS'AS. (CS*CS)'QS
KXCSD:(S-5wKS I KXSKCiE-;i iU
KXLSD=IAS-8SORI(KXi3*KXZS+KE'FHS.KXZS'OS
i(CSD-.KCSES-SOR'fKCSKXCSI*(GS*GS)*QS -

KCZSDzKC1S*OS.ES*KCZS-KXCS (BSUR#KXZS-FHS)

JzOOT=C.___________

RETURN
C

C LOOP TO COMPOTE X,KX~kXZvKZUOPT,J
1003 CONTINUE ______________________________

XSDI=AS*XS
K SD = DS UOPTS

C GET CIZTUR8At4CiSoMISSILE AND TARGET
WSzCIS*EXP(-ALPI4AS*T

XSOK5U1*XSU~EU

Z S= WiS
KSO=(-AS.9SORI(XSJWKXS-1XXS*AS-(CS'CSI*'S

KXC4J: (-Azi*8SOR9 KXSi 'KXCS-I(XCS~tS*CS* USGS
uXZSD=(-ASSBIRKXSIUXXZS-KXSFHS-KXZSUUS
KCSJ)=-2.'KCS'ES+BSOR' IKXCS*KXCS -IGS*GSD'QS

KZSiJ=Z.*KZS~JS*BSOR (KXZS'KXZS3-2.'FHS'KXZS
C COM4PUTE UOPT

DACONzl.
UOPTS=- (BSIRS)'IKXS*XS+KXCS'CSETS+KX iS'ZSDOACDNI

c kCOMPUTE PERFORMANCE INUJEX AT T.LE.TF

C+QS*GS' GS*CSETS*CSETS)
J3UOT=3.56IUOPTS*UDPTSwRSJ
IF t*NOT.LAST) RETUkN

C COMPUTE BURDEN, ASSISTANCE AND UTILIZATION IN RECORD RUN
euRUEs=a.5*KzS*ZS*ZS
A5L5-X~lX'Z- ZUNISIZ
UTILS=ASSLSS-BURWES
BURtJSPz BURDES
ASSISP=ASSISS
UTTLSPsUTILS
WSP=ws
KXSPsIKXS
KXCSP=KXCzS
IXZSPzKXZS
K CSP CC S
KCZSPzXCZ'S
KZSP=KZS
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T4X ZSP=THXZS

uoPTbPz UOPTS

XSP:XS
ZSPXZS
ENO_ __1

**TRANSLATION TIME

Tpf /
T
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SET ALPttASi3.V
ST ASaI.
SET aSsi.

Mt CINTOaI.

SET C3S-J6.1
SET OTBCKzO.t2
SET OTFOzQ.02

SET FSax______
SET G~zl.
S t.T H5a1.
SET IALGx5

SET RSsI.
SET SSal. ___ _______

SET TrTNITr-6.
SE7T XSICz3a.
PiEPAR T,XSP,ZSP.KXP*eXCSP,KXZ.,P.K;SPKCZSPKlSP,...
WSPVSP.UOPTSP.BURUSP,ASSISPUTILSPThXZSPYHCZSP

I!% A
* ~ N~j~ OF IAu .. A11ii;li DuQ10
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B.3 Program DUCAT2.

This section contains a listing and parameter

definitions for the DUCAT2 program which solves for a

disturbance-utilizing control or a conventional

linear-quadratic control in the case of zero set-point

(homing intercept) regulator problems with a second-order

plant and a second-order disturbance model. Input

parameters determined by "SET" statements, and plot output

parameters identified by "PREPAR" statements at the end of

the program, are defined below. Printed output parameters

are also defined.

INPUT PARAMETERS

PARAMETER DEFINITICN

A A as defined in Chapter IV.

ALH ah as defined in Chapter IV.

AT Transpose of A.

a B as defined in Chapter IV.

BBT BBT.

C C as defined in Chapter IV.

CINTBD Backward-time communication
interval (sec).
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CINTFD Forward-time communication
interval (sec).

D D as defined in Chapter IV.

DTBCK Backward-time integration
interval (sec).

DTFWD Forward-time integration
interval (sec).

F F as defined in Chapter IV.

FH FH as defined in Chapter IV.

H H as defined in Chapter IV.

IALG Logic input. Selects Fourth-Order
Runge-Kutta integration when
IALG = 5.

KX Kx as defined in Chapter IV.

KXZ Kxz as defined in Chapter IV.

KZ Kz as defined in Chapter IV.

Q Q as defined in Chapter IV.

RINV Inverse of R, Chapter IV.

S S as defined in Chapter IV.

TFINIT Maximum value Tmax for final-time
scan (sec).

VMR Missile velocity along LOS (ft/sec).

VTNIC Initial value, velocity of missile
normal to LOS (ft/sec).

VTR Target velocity along LOS (ft/sec).

WMXTB Missile disturbance input table,
independent variable.

WMYTB Missile disturbance input table,
dependent variable.
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WTXTB Target disturbance input table,
independent variable.

WTYTB Target disturbance input table,

dependent variable.

WDMXTB Unused.

W4DTYTB Unused.

WDTXTB Unused.

XIC Initial-condition value of x vector.

XMRIC Initial-condition value of missile
position along LOS (ft).

XTRIC Initial-condition value of target
position along LOS (ft).

XTNIC Initial-condition value of target
position normal to LOS (ft).

PLOT OUTPUT PARAMETERS

PARAMETER DEFINITION

T Program time (sec).

XP x as defined in Chapter IV.

ZP z as defined in Chapter IV.

KXP Kx as defined in Chapter IV.

KXZP Kxz as defined in Chapter IV.

KZP Kz as defined in Chapter IV.

W w as defined in Chapter IV.

WT Net target disturbance (ft/sec 2 ).
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WM Net missile disturbance (ft/sec).

BURDEN Burden as defined in Chapter IV.

ASSIST Assistance as defined in Chapter IV.

UTIL Utility as defined in Chapter IV.

JZERO Minimum value of J in a set of
Ji values.

TFZERO Value of T corresponding to JZERO.

UOPTP u* as defined in Chapter IV.

XTNP Target position normal to LOS (ft).

XTRP Target position along LOS (ft).

XMNP Missile position normal to LOS (ft).

XMRP Missile position along LOS (ft).

THMVP Missile velocity vector angle,
degrees.

XTP Target position, horizontal (ft).

YTP Target position, vertical (ft).

XMP Missile position, horizontal (ft).

YMP Missile position, vertical (ft).

XMD Missile velocity, horizontal
(ft/sec).

YMD Missile velocity, vertical
(ft/sec).

XML Unused.

YML Unused.
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PRINTED OUTPUT PARAMETERS

PARAMETER DEFINITION

KXT Stored initial-condition of Kx.

KXZT Stored initial-condition of Kxz.

KZT Stored initial-condition of Kz.

TAUTAB A particular specified terminal
time Ti.

JMATAB Value of xT(T) Sx(T)

T T
J2TAB Value of h f x (t) Qx(t) dt

0

TT

J3TAB Value of f U T(t) Ru(t) dt
0

JTFTAB Value of J at t = T.

X1TAB x 1 (T).

X2TAB x2 (T).

EAUTAB EAU as defined in Chapter IV.

EUTAB EU as defined in Chapter IV.

The listing of Program DUCAT2 follows:
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)UC. A 1-2

PROGRAM OPT6~
COMMENT COMPUTE OPTIMAL CONTROL FOR CASE OF MISSILE INTERCEPT
C WITH UISTURBANCES PRLSL-NT..
C ALSO COMPUTE THE. MINIMUM J IN A FAMILY OF J S..
C THIN COMPUTE ASSISYANCL tUURUeN ANU UTILIZATION AND PLOT
C
INITVIAL

ARRAY A(2,23 ,AT(Z,2190(e,1I,8TI1.2ltBUiTIZ.2) C(1 ,OIZZI2
ARRAY F(2,1II IF(,IgK~t)KX~~Z#KZZ2
ARRAY KXO(9)KZO .%$KOTZ?,X(2,l),Z2ol).Q47,Z)
ARRAY St2,2),vIq2,iItvZ(2,I),v3(2,1I$uT,I,XUOTlut(2,13
ARRAY XUOT3I2,91) ,UOT(~,1v ,XIC(2,1) ,KXT(2,i,1oO
ARRAY KXZJI2,,1Ou),KT(222(JD),MXTI~b),WlqYT9(8IWTXT(bI
ARRAY WrYT8(61.XT~1,2) ,ZT(192) .V'Z,1),ARA(2,2I,ARBIZ,2)
ARRAY KX8OT(Z,2DARC22I4RV2,2)ARF *2.2),ARFIZ.2)
ARRAY AR,2 '.Att t!.AIRHT(2,ZI,k3TKXZ42,2).ARII22).ARJtZZI
ARRAY ARJT(2,'TAUTAt(CISXZ91J,JTFTAOj(IOCT
ARRAY KZ(Z,9!) KZC2etZC(9)KZRZZ
ARRAY ~UY T I I)WUMXTL)(101,WUTYTIU(b) ,WDTX TO(6)
ARRAY KXP(4)*KXZP14)#KLP'.)
ARRAY XP(2A ,ZP(') ,XITA~t(1O0) ,XaTA8IIOL-)
ARRAY V5(&:,I)
ARRAY JMAlA6( 100J,'T Ad (1001 JTAJ(200I E AUTAH 1100 EU TAB 1130)

INTEGER I.J
INTtGLR N4

CONSTANT Az*.B"CozOO* v.F2C
CONSTANT H-Z*G..Q-4,C.,RINV=C. ,S;'*J.,UTRCK-O.
CONSTANT )TFWD=C. vTFI NI TzI.,*K)24*G
CONSTANT KX~u4O0.,KZ.4*.WMTBbC.WMYBb.
CONSTANT WxG.vW0zO.
CONSTANT WTXTQ2=P* ..ITYTDB-60.
CONSTANT XICx2#0.
CONSTANT XMRI~sO. ,XTRICzO.,VMRxU.,VTRaO.,V"NNC.,VTNCD.
CONSTANT VMNIC:L. ,VTNIC=O., XMNIC=C.,XTNIC=O.
CONSTANT WOMYTIVII . WLJMXTI IIO. ,M0TYTE3zbW .,WUTXT8'a'O.
CONSTANT ALH=O.

LOGICAL FADO~WOLAST

NSRJ
UO 8WoIC 12ila

DO HNOIC Jli

KLIC(ItJIsO.
OWDIC..*CONT INUE

CALM&COS IALHO0.01?4'.

F W0tWOB.FALSE.



L AST a .F ALSI.
LOOP..CONIINUL

CONSTANT tCINTLFo.GC
CONSTANT C1NTF0a0.1,ClNltIU-0.1

UOPTSC. 0
OURUEN 0 *
ASSIST .0
UTIL a .
w a G.0

WT a 0.0
N1M a 0.0
CUN4TANI 182*0.
TSIP a 1C.

KXP(12140.0
iKXP(3)aO.J
K XP(4 J'0.,

KXZP(Z)G.0
KXZPIJ) .0.0

KlP~l)aD.L
KLPI,41*0.0
KZP(3130.J

XPIlbUO eC

£PilsoC.0

UOPTPxO.0

Js*0.

EAU1AO&~C..

JZPSD.

JMAYERa C.

KINPUD.
XYRP&D.
XMNPsO.
Xi4RPBO .

(IPSG .

V14L&O .
THNVPUO.
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END S "INITIAL"
DYNAMIC

CINTERVAL CINTzO.2.
MAXTERVAL MAXT-C.g:I

NSTEPS NSTP=1

CINTFLwRSWfLAST ,CIN1LF .CINTFD)
CINTaRSWIFWD8WD),CINl FLCINTt3)
VARIABLE TzO.

ALGORITHM IALG=4
IF (FWUBWUI GO TO SKPSV
IF(r.LEO.) GO TO SKPZ V

UO iVLOOP IzI,2
0O SVLOOP Jui*Z

KXT (I,JNSI-KX(I*Jl
KXZT41,J*NS12KXL( 1JI

SVLOOP. .CONTINUE
GO TO SKPOER

SKPSV. .CONT INUL

WLzW
TL*T

SKPa)ER. .CONTINUE
TERMT(AS(TTFINII).LE.GINi~UAN.NCl.FWUBWUI
IF(FWDBWD) TSTP:CINTBU*FLOATINS)
IF(FNVHNDP CINT=AMIN1 (CINTI-L TSTP-Ti

CONSTANT TGONN:.E-3

OERIVATIVE OPTGN
CALL FfNUfRV
KX4INTVC (KXUOT. iXIC)
KXZzINTWC(KXZOOToKXIICJ
K~z INTVCI(ZOOT*KZICI
X*INTVC IXLOT,XICI
J2%INTEG(J2UOTq3.)
J.3wINTE6IJ3DOTw. .

E~JzINTEGIEUDOTO *)

EAU-INTEGIEAUDOT*G.)
VTN=INTE6IWTtVTNIC)
XIN*INTEGIVTN*XTNIC)

END S "DERIVATIVE-
END S IYNAMIC"
TERMINAL

IF fFWDbjW~oAND.LAST) GO To TERM

IF (FWDOWD) GO TO CYCLE
WRITE (bv,)S) IIIKXTIIIJJKKIKXZTIIIJJKKho 00

KZTIIJJK),II,2)JJI,2)1,KKl,NS)
98.. FORMATTZ*JEi5*5)

INTEGER NSFN.
N SF NIeN5
NSaO
FWOBW[D .TRUE*

.-.1gbmd2hl
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GO To SETIC
CYCLE. .CONTINUE

00 JTI Izl,2
311.. XTI1.I)uXII,1I

CALL 14MPY(SqXSxvZ,2,1)

00 JT2 Izl,2
JT2.. SC~zSCM+KTI1,II'SX(I,1)

JNAYERz 0.59SCM
J TFmJNAVER+J2*JS
JNATAB(NS)mJIIAYER
J21AB(NS3zJ2
JJTAB (NS)=JS
EUTA!3(NS)=EU
EAUTAdI NSISEAU
A iT AS NS) 11l,1)
X2TABINS)=X(2,11
JTFTABI NS)=JTF
TAUTABINS) T

SETIC..NS=NS.1
IF (NS.GT.NSFNL) GO TO FNLRUN

RECOR*. 00 ICI J2192
,)O ICI I=192
KXICII*JI=ICXT(I*JvNS)
ICAZIC(I,J)-KiZT-fI IJ,NS)

IC1..CONTINUE
LOG

GO TO LOOP
FNLaRJN. .CONTINUE

JZERO=1 .E30
00 JMIN I=1,NSFNL
IF (JZERO*LToJTFTABIIII GO TO JMIN
JZERO=JTFTAB II
TFZERO a TAUTAO(IJ
NSsI

JtIN..CONTINUE
NSa 9
WRITE(6,299) (TAUTABII) ,JMATA8(ID.J2TAB(I),J3TAS(Ise

JTFTAS(I3,XITA8l(l),X2TAB(I),EAUTAB(IIEUTAB(I),IalNSFNL)
299.. FORMATI Td.F'2T2, 1.4,T26,E1G.4,T40,ECI.,...

T549, El).'., T68 9E10 949 T82vE10 *4,T96,qEO.'49,TIO,pEO..)
REMIND 8
LAS Tz.*TRUE.
GO TO RECOR

TERM..CONTINUE
END S "TERMINAL"
END S "PROGRAM-
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SUBR~OUTINE FTNORV

IF fFWOSNOI GO TO IC03
CALL MMPY IKX,A,ARA,ZZ41)
CALL P411Y fAT9KX,ARdqZqe)
CALL MMPV (KXB8BTKX8UT92s,2)
CALL 14"P'v lKX881,l(XARCZ.2,2)
CALL MMFY 4KXB8T,KXLARO9 9,2)
CALL 14MPY (ATKXZ*ARE*2*2*21
CALL "MY IKXZU*ARF,2ZZ2a
CALL MMFY (KX,FH.ARG.,929)
CALL M14PY IKZ,O,ARN,2,2,Zl
CALL MNPY (8aTKXlB8TKXZ92q~q2)
0O 5 ja1,z
U0 5 Iml,Z

5 KXlTR(lvj3l,(XL(J,i
CALL MPV(KXZTR,&iTIXZ*ARI, e.Z,2)
CALL PINFY (KXZTRFH,ARj,,ee2)
DO b J31,2
DO 6 18192
ARMY (I.J)rARN 1.1,I

b ARJTII,.fl.ARJ(JvID
C
C
C A.T DERIVATIVES FOR BACKWARD INTEGRATIONS

1)0 10 JZlZ
UC 10 1.1,2
KXDOT(IiJ).ARA(IJI*ARB(IJI-ARC(IJ)*RINV.Q(1,JR
KXZO)OT(1,J~aARG(IIJ),ARF(l.J)#AREIIJI-ARD(tJS*RINV
KZOO111J) zARJtlJ).ARHI1,J).ARJ1(IJIARNTIIJi-ARI(IJ)*RINV

IG CONTINUE
C

JZDOTm0.
J3OOT&0.
EUDOTuG.
EAU1)OTx.
DO 20 192
0O 20 Ja1,Z

RETURN
C
C LOOP TO COMPUTE XKEKXZoKZUOPTiJ
1903 CONTINUE

C
C SET UP TO COMPUTE

CALL MMPYIAv,OOII.Z2,21)
DO 100 lal,2

lot XOOT?(I,)aS3(Ivi)U0PT
C
C
C GET DIZTURBANCESiNISSILL AND TARGET

WINOMEO.
IFIT.LT.1.7.OR*T*GT.2.5) GO TO 1001
W*INJNa32.ZSINI3.92?7(T1.7I)SINS.92?(T-.)I



276

10.31 CONTINUE
WiMasINUM-32.2*CALH4

C
C GET COMPOSITE DISTURBANCE

W zwfq-NT
DO lo1 I=192

D0 1G2 12192

C GET DISTURdANCE UERIVATIVES, MISSILE AND TARGET
! (2,2i=WD
XMRx X14RIC+VMR vT
XTRzXTRIC+VTR#T
VMNxVTN*X42vi)
XMN=XTN*Xt1,1)

C
C
C SET UP FOR KX,KXLKZ FORWARD INTEGRATIONS

CALL MMPY (KXAARAZZZ)
CALL MMFYIAT*KXARB*,24
CALL MNPYlKXqB8T*KX881,Z,2*ZI
CALL MMPY(KXB8T9KX9ARC92vevZJ
CALL MMPY(KXBBTtKXZvARDZ9,2Z
CALL MMPY(AT9KXZsARk9292Z1~
CALL .44PY~lX2.O.ARF*222)
CALL MMPY(KXFNARGZZZ)
CALL MMFY(KZ9O*ARHZ29~2)
CALL MMPV(B87vKXZ,8aTKXZ.v. Z)
U0 105 JzI92
DO 105 I=1*2

105 KAJZTRII ,J)*KXZ(J,13
CALL MMPY(KXZtR9B8rKXZ,ARIv.2ZZ)
CALL MMFY(KXZTRtFH*ARJ,2,9, Z)
00 166 JZL1
00 lob 12192
ARHT (I, JI ARH CJI)

10b AI4Jr(I,J):ARJ(JtID
C
C
C GET CERIVATIVES FOR FORWARD INTEGRATION

DC IIC JzI,2

KXZL)OT( I,J):-ARG(I.J) -ARF(I J5-ARE (I ,JI ARDEI .J)RINV
KZO~t(IJJ.-ARJIX.JI-ARN(1.J)-ARJI(I ..)-ARNTItJ).ARJ6X.J)',RINV

ll CONTINUE
C
C
C COMPUTE UOPT

CALL MMFY(KX*X9V1,2v,l1
CALL MMPY(KXZ9ZVZ9g&.21I)
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00 12? 12192

00 121 Iz1,2

UVPT2-RINVOUSC

C CUMPUTE PLIkF0RMANCL INU.K AT T.L.TF

UO izz 1=192

J2001: ->J2

EUOTzJ3uUTwI1N
E AUJUTz ,uRTW(OPT~jOPT)
IF I.NUJ1.LASTI RfTUP<N

C L;OM#3UT-. BURDEN, ASSI'iTANGE AND UTILIZATION IN REC0IR0 RUN
CALL Mi4PY (IZ,Z,V'.,2, l)
kHSC:c .0
0C 21 1:1,2

21(C BSC=USC+i 1,I bV'. Ivl.
HURLJEN a'!.fS
CALL NMPVIKXZZ9V%.,29evlb
A SCza0 .0
UO Z.3C Iul92

23t ASCaASC*X41,1)PV4.II,)
ASSISTz-ASC
UTI~:ASSIST-SURDEN
X TaXTR*CALH+XTN*SALM
YTa-XTR*SALH*XTN*CALH
K M-EMR'C ALA. K MNOSA
V I'KMNOCALH-XNR*SALH
K M~nV MR *CA LH*.V PN*SALt
VMOzVMN*CAL-VMRqi~ALH
Xl40sX#NO,1.E-2.
TI4MVzATAN2VVMaqxM0! '5T.2-15a
TNMVP=TIINV
XTzX
V IPYT
XP~zXf4
VMPSVM
KXPII)aKXII,1)
KXP 42)xxXK(2,1)
K XP13I) uKK41,2 I
ICPI.aKKI292)
ICXZP( 1) KXZIIIb
IXZPI2)uKXZI2,lb
KXZP43)aKXZ41921

9 KXZP14duKXZ(2,21
KZPIISKZ(1,ll
KlP42uKZ(2sl)
KZP13bUKZ41921

* KZPI'.)mKl(2,Z)
XP( 1) ax (1,11
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IP(Z!I zX (2911

UOPTPZUOPT
X INPS Xr i
XTRPzXTR
XMNP-XMNI
XMIWIXPIR
END

*OTRAN.4LAIJON TIIILz
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SET Ae t. CO.,1'
SET AL~a3J.

St.T oa.1

SET Cal.L,.C
bt T C IN TFOSO .

SET CINTBOXC.5
!iE T OR . 3 9 . ;
SET OTOCKnO.EZ
SiT DTFbEO-C.CZ

SET H&L.C,O.L
SET fma.C. . C C C.
S.T IALGx5

F SET KXlai..O.C.CC.C93.3

SET s.O.
SET RINVai.
SET S5.O,.,~
SET TFINITab.
SET VMR:.> OC.
SET VTNICzO.
SOT VT~a(.

SET WNYTB=-.2?.4.,r 1. q -iI *-It C -Z7.,
SET WTXTeaa.Oo l.. 2.19 Z.1, SI.C. 4.0
SET W1YTtO:o.Ce L.09 3.19 64.4,. b44 b4....
StO WflNXTO a

SET WTTflz a

StT XICuJ..1

SET XTRICzC.
SiT XTNICaG.
PREPAR I ,XP*ZP*KXP*'KXZPI(IP*WvWTWM,..

BURJEN, ASSIST eUTIL ,Jle OTF LEROu*UPTP
PREPAR XTNPXTRPXMNPXMRP
PREPAR TNNVP
PREPAfR XTPYTPXMPYNP
PREPAR XpqoYHU
PREPAR XML*YML
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B.4 Program DUCAT3

This section contains a listing and parameter

definitions for the DUCAT3 program which solves for a

disturbance-utilizing control or a conventional linear-

quadratic control in the case of zero set-point problems

with a fourth-order plant and fourth-order disturbance model

(or two second-order disturbance models). Input parameters

determined by "SET" statements, and plot output parameters

identified by "PREPAR" statements at the end of the program,

are defined below. Printed output parameters are also

defined.

INPUT PARAMETERS

PARAMETER DEFINITION

A A as defined in Chapter IV.

AT Transpose of A.

B B as defined in Chapter IV.

BT Transpose of B.

CDZXT Drag coefficient table, independent
parameter.

CDZYT Drag coefficient table, dependent
parameter.

CINTBD Backward-time communication
interval (sec).
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CINTFD Forward-time communication
interval (sec).

D D as defined in Chapter IV.

DRAGC Drag constant, SmCD
as in Chapter IV.

DTBCK Backward-time integration
interval (sec).

DTFWD Forward-time integration
interval (sec).

F F as defined in Chapter IV.

FH FH as defined in Chapter IV.

H H as defined in Chapter I'.

IALG Logic input. Selects fourth-order
Runge-Kutta integration when
IALG - 5.

MMXT Missile mass table, independent
parameter ( time).

MMYT Missile mass table, dependent

parameter (sluqR).

R R as defined in chapter IV.

RINV Inverse of R.

S S as defined in Chapter IV.

TFINIT Maximum value Tmax for final-
time scan (sec).

TMANXT Target maneuver disturbance table,
independent variable.

TMANYT Target maneuver disturbancl table,
dependent variable (ft/sec ).

TWNlYT Horizontal target wind disturbance
table, dependent variable
(ft/sec2).
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TWN3YT Vertical target wind disturbance
table, dependent variable
f t/sec

2 )

TWN3XT Vertical target wind disturbance
table, independent variable.

VS Velocity of sound, low altitude
(ft/iec).

WND3XT Vertical missile wind disturbance
table, independent variable.

WND3YT Vertical missile wind disturbance
table, dependent variable
(ft/sec2 ).

XIC Initial condition of x.

XTIIC Initial condition of horizontal
target position (ft).

XT2IC Initial condition of horizontal
target velocity (ft/sec).

XT3IC Initial condition of vertical
target position (ft).

XT4IC Initial condition of vertical
target velocity (ft/sec).

PLOT OUTPUT PARAMETERS

PARAMETER DEFINITION

T Program time (sec).

XP x as defined in Chapter IV.

ZP z as defined in Chapter IV.

KXP Kx as defined in Chapter IV.
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KXZP Kxz as defined in Chapter IV.

Wip w, as defined in Chapter IV.

W2P w as defined in Chapter IV.

UOPTP u0 as defined in Chapter IV.

UTIL Utility as defined in Chapter IV.

BURDEN Burden as defined in Chapter !V.

ASSIST Assistance as defined in Chapter IV.

CDZP Drag coefficient CD as in
Chapter IV.

MMP Missile mass (slugs) as in
Chapter IV.

DM Base drag of missile (ft/sec2 ).

Dl Horizontal component of DM.

D2 Vertical component of DM.

THMANP Angle of target maneuver force
relative to ground (degrees).

VELTP Target velocity magnitude (ft/sec).

VELMP Missile velocity magnitude
(ft/sec).

TMANP Target maneuver acceleration
magnitude (ft/sec2 ).

ULONGP Missile control force,
longitudinal (pounds).

ULATP Missile control force,
lateral (pounds).

UOPTAP Missile control force,
resultant (pounds).

WIND1 Horizontal missile wind disturbance
acceleration (ft/sec2 ).
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WIND2 Vertical missile win disturbance
acceleration (ft/secl).

WNDTlP Horizontal target wind disturbance
acceleration (ft/sec 2 ).

WNDT2P Vertical target wind disturbance
acceleration (ft/sec 2 ).

XMlP Horizontal missile position (ft).

XM3P Vertical missile position (ft).

XTIP Horizontal target position (ft).

XT3P Vertical target position (ft).

THMP Missile velocity vector angle
(degrees).

THTP Target velocity vector angle
(degrees).

XT2P Horizontal target velocity (ft/sec).

XT4P Vertical target velocity (ft/sec).

XM2P Horizontal missile velocity
(ft/sec).

XM4P Vertical missile velocity (ft/sec).

XT2DTP Horizontal target acceleration
(ft/sec2 ).

XT4DTP Vertical target acceleration
(ft/sec 2 ).



285

PRINTED OUTPUT PARAMETERS

PARAMETER DEFINITION

KXT Stored initial-condition of Kx.

KXZT Stored initial-condition of Kxz.

KZT Stored initial-condition of Kz.

TAUTAB A particular specified terminal
time Ti.

JMATAB Value of xT (T) Sx(T)

T T
J2TAB Value of f x (t) Qx(t) dt

0

TT

J3TAB Value of f u (t) Ru(t) dt
0

JTFTAB Value of J at t - T.

X1TAB xl(T).

X3TAB x3(T).

EAUTAB EAU as defined in Chapter IV.

EUTAB EU as defined in Chapter IV.

The listing of Program DUCAT3 follows:
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DU r-A r 3

PRCGkAA OPTG
COMMENT -COMPUTE OPTIMAL L.O-iT".uL VO CASE OF MISS'ILE INTER~CEPT -

C
INITIAL

ARRAY 61"4

AR~RAY ARI1(
ARRAY
ARRAY CijZXT17),CDZYT1(7)

ARRAY JTFT(i ) v KX ( -,. ) 9 KXTC (-#4 J ,KXP ( -0, KXT (4'.4, IC)
A-00Y' JMAIAtL4),JTAU(.),JTA~it1.)LAUTAa(1.ALUTA8C1jI
AqRAY KkUUJT(A,4)

AQRAY KXUT44

ARR;4Y KAu0T 0~

ARRAiY , iNINV().k kI~YTU)(9)PUT2&oS,*)S(tl
ARRAY TMNT 4 TA1T,)-# ,.IXTAi(),3A~L
ARRAY tU~tZ

ARRAY (,.) 's.±J

INTZGER 19J

INTZGc-R ti3WNL

CONSTANT
GJNSTANT tLZT=7*-'.,CuZYT=7*"*

CONSTAN4T JMT= ,lq1YT=t..

CONSTAANT URA(=..
CONSTANIT JT KK 0-o
f; JNST AN T F 8* .qF =64;.9 VJ . d
CONSTANT KX ,6 )(-.6 Z 6
GiNSjTANT MA.P..
CON;TANT viP:
CJNSTANr MMXT=5*L.,4-4,YT:5*..

t; ON3T AN T TFIN1T=,a.i.
CONSTANT TA NP-=-.~qTfffWP-: . P- .. W ZP= i.vVELTP z U
C JNS TANr I (MN=.. TMAt#Xf=-.# IMiANYr:#Z

nW ~ ~ v, T, ':~AN A 13/

SIGNI FI C%,NT NUHROF FG1~WIHD
i-,PEVDUCBL L2:'.IBLY.
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CONSTANT TeN!XY=6*L.,TWN3vT -0
CON.jIANI UjWTArP-L.
CON S'TN T ULNtP.. .ULATPz
CUN41ANT V..- .
CONSt 4441 00L1 .. Wuez.

COW;l3ANT wN ZTzb.,N3 YTo*Z.
C UNZ IAN I WNT P WNuT,:P-i
CONSTANT XIC=.' .

CJNSTANT XT;iL= .;9XISit~z XT& i~L LX141L.:O .
CONSTANT XTZDOT.:..XTD~T

CONiTANI Xm P 9 M .,NPz .,A I !Pz, TSP= J rmpz i frHPui1.

LjGIC-AL FWUuwtutAST

NS.W~.A

OOP1. .CONTINUL

COr'iTANT LINTLJF~u..'e
CUNsrANT CINTFOzL.I;,cINT1IS.l

CONSTANT UOPTzZ*C.
6URLJLN a ..
ASSISTz'.
UrIL z .
CONS TAN T X~'.~.-
COJNSTANT Z:*.
TSTP -- .*%.
COJNSTANT KX#XbL.XLPv*..KZPo*L.
CON:STANT -

UUN.TANI UOP7P= ..

E Aua: L.
EU,j.
J2s:c .-
,JIAYAz..
TL=a.
MAC4-.*

WI.-
W2z.
WlLz..
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WeL=,.

XTZ=XT41uL

x T3:xljI L;

XM2=ZXC i,1Jl+xT 2
XJ43-X IC (3 .1) ;XT3
XMd.:XIC (4.,1) XT+

ENDC S " I krT IA C'

CrtrLRVAL -CIiNT..f . -

MAXTLr(V AL MMXT=.. .
NST:.$ N&11TPi -

CNLLACINFLkv(ATsINL~k,NF)
CINTRSW (F~CIBi ZCTFL,Z; TI3

ALGor~rTHH IALG:L.
IF (Foijbit) Lu T0 JS(P ,
IF(r.LE * E. iGu TO SKPSV

00 SVLOOP 1---'14
LIU zVLOUP Jz1,L,

KxT(I.,S=K-Xl,- ... .

h(XZT11vJ ,NS)zKX(I I
KZTCX ,j,NSY=KZ1Il,j)

SVLOOP. .GONTINuc
GGO T SKPDER

SKPSV. ..CO1'TINUE

SKPu)Ek. .LJNTINUL

IF(FWL),dWu) T. TPzCIN1JU*VLuA4S)
IF(FWDBIJO) tI1,T=AHINlCINThL ,TSTP-T1
CUNzTANT [G0MN=1.---

TERNT (A S C T-TSTPJ *LL.TGM.-ANU. FWDBWIJ
OERIVAriVz JPTiN

CALL. FrNDRV-
iXZINTVC(KXUUT, I0IC)
i<XZ=1ZNTV-UKX7ZDGT ,KXZICY

KJINTV.u(ZU0TtK .1
Je=Lr~c(j3DUO r;:.i.

r.AU:INTE(dLAUU0 T, *

x rJ INTL XT ,XMT1I

XTz;Tr..T 9XleA /
xT4=HTETi' .b OFFWI-HDONO
X ZRuL~kjCX. 9XTIiLYC_
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AT3=INThO4XT.,,XlIL)

XM3z 43 ,1)*AT3

END S "ULKIAII "
ENLU S "uV NAMIC"*
TERM4INAL

I F ( 0J thw. ANJ. L A.3J U1 1) tk TM
IF (Fwaawuij Go To CYCLE

98.. * M~l, ,tl .,

tO Tu SLIlc
CYCLE. .CONI1 INU-.

J72. Ji.. j:.,.)*)((oi

JMAYtkL.*,HC
JTF JMAYER*J,'.J3
JMATAU(NS)ZJMAYLk

JJTAblN5 :J3
EAUTA3i:jEAu
r- uT A b I NSIz LU
XlTA(NS)-Xt(±,.)
X3T~~b(NSDjX(,3 ,.j
JlFlA6(N6-=jTF
TAUTAB3(NS) zI

SE TIC. .NS zhj+ 1
IF (t4.).GT.NSFNL) GO T-C FNLRUN

RECURI.. UJ ICI J=194e

ICI . XONTINJ.C
LOG

%po rU LOOt'
FNLRUN.*CONTrNU:-

00 JNIN I -"sSFitL-
IF (JLr.RU*LleJTFTA8I) GO TO JMIN
JZER'DJTrA6TlIF-'-
TFZ.iLiJ a iAUJAI3II)
N:;xI -

JM No*CUTIN
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299.. FORMAT( T4,Fi..~,. F 29%12 - ."

REWIi~i 6

C,kO To REC
T~kM.i.NE INUL
END S "TE'td4ItAL"
END 6 "PRWU RAM'

Ilk I' NoT
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SUSRoUTINc FTj4D~v'--

IF lFWotiiWe Cia -To 103

UO . L-

CALL MI4PY 1KX9A,AZtAW,4,-#l

CALL P~IVBI'.Z2
-CALL tP 8IV T d

UO 4 J=194

' ARO I1J )=AR( 4 ,!I il
CALL- MHPT(ARCI, vX9AkC,,W4
CALL ?lFYfAkC),iXl.AxD. 94 #-#1
CAL L MMPr(KrTR Akd(, A~r4,T,' 94 1
CALL MlfPY(ARX.I9X1 ',4v,.,.)
CALL HHPY'AKXZT F 4Rj,', .t .- , Z;
CALL M(4PY (AT 9KXZ, AE 94,'4I4

CALM _YTKX79 -9~AF 9109d 9 . - _- -
CALL MI1PT -AR '4
C ALL_ MAPY ,K9hAR1{Z9,Wt -,

DO oJ=194 -

6 A5~jTI,jl=A~j4fj7TIV--

C GLT uExIVATIvES FOr' 3AC;K.ARO IN'TEGRATIONS - -

JJ J~I.*JJ

i(ZI~T ir~ v~~TI JT4 AJTI'J) +A RN (T, JI -IRVTjI
it CONTINUE

c - -.---. . .- - . . . . . . -

J200OTJ.
-J 30-Ji;.
LAUOI=".
'E U fliT=- -* _--- -- _ -- -- --_--- -

RET URN __

C LOOT____PT A,KXI(XLKZUOPTJ

CALL MNPYA~XXOT1,4,491)

C Gc.T DISTURBANCtSi MlI ;Slt: ANU. TARGET

~':2w7, Ts -ICABIA.

SICGNIFICAi;T JJOFf PAGIESwMiIOB DO WT!
RMIRorMLICE LEG IBLY.
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MACa4: VL LMIV:J
CALL 1NI-PHACm,CDNT u7V ,?*,~' LZ N~Rb)

U I= UM*AM, /VL
uld-U!
UZz3VNAM4'/VL LM

TtAeT 1AuU.

IF41LL - 1-1) 1 ii-Az-I~i

LWtjTNDN'XTM ' A i4

TJT HN NI T* - T*( T I.AhliN -rHA iAsN* IdMAN II

CALLIN2. P I IRAV-XT ..Du T vv~fw~NR

I. F (I. Lf I WJ.I K I I. .5 i T Iu

PIaz 324'.,N(.97 (TI7 O):N .9Z T-.7
C IU.W NMA-/L -
C MZzIDMXZVL

iC CONTINUE ~:b~A~. - .-. .

AL 2 FY0 F = ,'.T +,..T(T.I4 MA)*U N

C
C

C

C att ud' FUR4 e.JCtXd,,Z Ftdo~~i INTLGXATIUN3
D 0 1.5 J=!94

1u5 KAZr%(IpJ)zKXZIJ,II
CALL IMIFY IKX9A9AA'.,..,..
CALL M84PV (AT, e-iR93,i,'.,)

CALL MMPYdRINVTARK,49..,4I
CALL MrlFYKXjRwq4Rt,'.,4s,.,

00' IZ4 J-19

JO......................
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CALL 414 (A FCL 0 At4-

CALL MMPY 4Auva., ,A ,~,'c)
CALL MMVK(TR.N!444
CALL MD1PY(At~I1 KXi9A~U .. "4,)
CALL *PYtKX2T(tFH, Rj94,.,4)
CALL MIP'i fAT,KXZ,A-E'.,'.,'

CALL 41 ( 4 P Y (,F ARu,..,.4%
CALL MMPY (KZ-90o ARHO t4 94)

jO ;.L6 ,.

i 6 ARJT ( IJf:ZAJ(t 09 1. -

c
C tclU)IAI~iFNFKJ~ NEkTO

U~IUTUP
KAL tUYti(XXVA4AI~j-~ilj+K(, ,e,4 4)

c CPUTT (,-u6PT (4

C 2 -3I -l 4V .- - - +----f---.

C CCGMPUl1- PERF~3(MAN4CL l?4UZX AT T.LE.TF
-CALL '4MPY(RUOITRUOT-$-2I1.Y

VDOTI=G

2L.5 VjUT=Vr*fljUPT(It,)RUUI(I,1)__

-CALL t*IPY,(AXPX94,'.,1

aJO Zo 1=1,4

217 ZE? ~v D=TTkuOPfTT'U3MOTT IT
(.Ui)uT3j .5#VC.OT3

YHM=ATAN(XM.,XlZ
- r NP -RTTF51f . . . .. . . .

ULONGUPT 911IGOS TH U T ~I S IN THM)

T.

LN.A
. - DU MMr

........................
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ULAT=UUPI(Z,,)#U(Hm)-juf~i 4.). NTmqI
t AU36T -.cJLUNU-41AIULU N~.# L 4U)+<kT (JL A IULA T i
IF (.i.UI. .AZ J RLTU. N

C CU4iPUT- UAIKLN, -irr A4(J LUILIZATZUN IN RECORD RUN
CALL MPY(KiLL 4,.,.,ij
BSC=t

CALL ImiFVKXZVZ9 - -1.

00 23:- I=.p.

ASSISTz-A3)C
ST IL= AS Si AT- oJUUN -

DO 23,1 I=9
LiD e3L JZ- 94

KXZP(19J) KX(1J)....

234 XP(L,iI=.<(l 11 1

uoJPrPc2 ,.)~uDPT (i,i)
UOP TP ( ,I) UuPTP i -- ) mI{

U OPT AP UPT AP*t
UL0LNPULUN(*MM
ULATP=ULATM4
XT1I'=Xf I
XT3P~jT3-

xr43P=Xms

CDZP=CDZ -. - .--

N NP:MM
VEL.4P=VELA1
MAICIPMACH

TMA VP:TMAN

XFZP='XT2
xT4P=xT4 ---.-
xlp~K'I2
)(44P=XHd,

sIP=Wi
w2paW2.........----. .

XTZJ1P=XTeucl
Ar~fiTP-XTrJOr
END~

**'TANiLArI0N TIr.

0 -.

i~RA,,C DUGIN y
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4"T LIN).

a, r I uj~

ii~T Cjxz. 7 *, 5, 1 .................. .......- I. -

S~. TMAXZ L; ilTT i j Is
ed T CAIN T=:.:-ia,33

S r- T k, ti L = N 7 * Fj, *,

S -:T i .--

SET TWN3) C , 5 ,.,U- c.7,1

SLT UxtFI(=D.
SET F = 1 t~: . 9". ,.9L

P6PA CO7 6,M - . j
TPi~E'i MDJ

SL IS DL'IXIV =5 .
SO *..vrst .* A. '

S r-1 T TMANYTj .> 1,:3 1 e

P r1
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